

Road Stabilisation and Dust Suppression Chemical Ecological Risk Assessment *Technical Report*

Global Road Technology

15 May 2014

0222833_RP01 Final

www.erm.com

Road Stabilisation and Dust Suppression Chemical Ecological Risk Assessment *Technical Report*

Approved by:	Olivia Patterson
Position:	Project Manager
Signed:	Pat-
Date:	15 May 2014
Approved by:	Sophie Wood
Position:	Partner
Signed:	Mool
Date:	15 May 2014

Global Road Technology

15 May 2014

Environmental Resources Management Australia Pty Ltd Quality System

0222833_RP01

www.erm.com

This disclaimer, together with any limitations specified in the report, apply to use of this report. This report was prepared in accordance with the contracted scope of services for the specific purpose stated and subject to the applicable cost, time and other constraints. In preparing this report, ERM relied on: (a) client/third party information which was not verified by ERM except to the extent required by the scope of services, and ERM does not accept responsibility for omissions or inaccuracies in the client/third party information; and (b) information taken at or under the particular times and conditions specified, and ERM does not accept responsibility for any subsequent changes. This report has been prepared solely for use by, and is confidential to, the client and ERM accepts no responsibility for its use by other persons. This report is subject to copyright protection and the copyright owner reserves its rights. This report does not constitute legal advice.

CONTENTS

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	COMMISSION	1
1.2	Project Background	1
1.3	Objectives	1
1.4	Scope of Work	2
2	APPROACH	4
2.1	AQUATIC RECEPTORS	4
2.2	Livestock	6
3	PRODUCT APPLICATION	8
4	LABORATORY ANALYSIS AND RESULTS	9
4.1	Methodology	9
4.2	RESULTS	10
4.2.1	TOXICITY TESTING	10
4.2.2	Soil Leachate Chemical Analysis	11
5	CHEMICAL AND TOXICITY PROFILES FOR LIVESTOCK ASSESSMENT	13
5.1	CHEMICAL PROPERTIES OF GRT7000	13
5.2	CHEMICAL PROPERTIES OF GRT8000 AND GRT9000	13
5.3	CHEMICALS OF CONCERN	14
6	TOXICITY ASSESSMENT	17
6.1	TOXICITY REFERENCE VALUES FOR AQUATIC ECOLOGICAL	
	RECEPTORS	17
6.2	TOXICITY REFERENCE VALUES FOR LIVESTOCK	17
7	EXPOSURE ASSESSMENT	19
8	RISK CHARACTERISATION	22
8.1	AQUATIC RECEPTOR RISK CHARACTERISATION	22
8.1.1	SOIL LEACHATE RESULTS	22
8.1.2	ECOLOGICAL RBSL CALCULATION	23
8.1.3	DILUTION FACTORS IN THE EVENT OF A DIRECT SPILL OF	
	APPLICATION SOLUTION	25
8.2	LIVESTOCK RISK CHARACTERISATION	26
8.2.1	STOCK INGESTION SCREENING LEVEL CALCULATION	26
8.2.2	SOIL CONCENTRATION CALCULATION	27
8.2.3	HAZARD QUOTIENT AND HAZARD INDEX CALCULATION	30
8.2.4	RESULTS OF RISK CALCULATIONS	30
8.2.5	UNCERTAINTY ANALYSIS	31
8.2.6	MARKET ASSESSMENT	31

9	CONCLUSIONS	34
9.1	AQUATIC ECOTOXICITY RISK ASSESSMENT	34
9.2	CATTLE ASSESSMENT	35
9.2.1	CATTLE HEALTH RISKS	35
9.2.2	MARKET ASSESSMENT	35
9.3	ASSESSMENT OF POTENTIAL FOR SOIL AND SEDIMENT	
	Contamination	36
10	REFERENCES	37

LIST OF TABLES

TABLE 4.1	TOXICITY TEST RESULTS FOR GRT7000	10
TABLE 4.2	TOXICITY TEST RESULTS FOR GRT7000 SOIL LEACHATE	10
TABLE 4.3	TOXICITY TEST RESULTS FOR GRT8000/GRT9000	11
TABLE 4.4	TOXICITY TEST RESULTS FOR GRT8000/GRT9000 SOIL LEACHATE	11
TABLE 5.1	CHEMICAL COMPOSITION OF GRT7000	13
TABLE 5.2	CHEMICAL COMPOSITION OF GRT8000	14
TABLE 5.3	CHEMICAL COMPOSITION OF GRT9000	14
TABLE 5.4	ESTIMATED COMPOSITIONS OF THE PRODUCTS	15
TABLE 7.1	Key Source-Pathway-Receptor Linkages	20
TABLE 8.1	TOXICITY DATA REQUIREMENTS FOR AFAPPLICATION	24
TABLE 8.2	BURRLIOZ OUTPUT FOR GRT7000 AND GRT8000/9000	24
TABLE 8.3	ECOLOGICAL RBSLS CALCULATED USING AF APPROACH	25
TABLE 8.4	DILUTION FACTOR FOR GRT7000 APPLICATION SOLUTION	25
TABLE 8.5	DILUTION FACTOR FOR GRT8000/9000 APPLICATION SOLUTION	25
TABLE 8.6	. Calculated Rbsls For Chemical Constituents Of GRT 7000 And GRT8000/9000	26
TABLE 8.7	COMPOSITION OF BITUMEN FOR PURPOSES OF ASSESSMENT	29
TABLE 8.8	COMPOSITION OF EMULSIFIER FOR PURPOSES OF ASSESSMENT	29

- ANNEX A ECOTOX LABORATORY REPORTS
- ANNEX B ALS LABORATORY REPORTS
- ANNEX C MSDS
- ANNEX D TOXICITY PROFILES
- ANNEX E LIVESTOCK CALCULATIONS
- ANNEX F BURRLIOZ OUTPUT

EXECUTIVE SUMMARY

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by Global Road Technology (GRT) to assess the potential ecological risks and risks to livestock health associated with the use of GRT7000, GRT8000 and GRT9000 for dust suppression on roadways in Queensland.

The main ingredients in these products are bitumen, hybrid-styrene copolymer, and an emulsifier. The assessment considered the potential risk to the aquatic environment resulting from spillages and run-off / leaching from treated roads, and potential risk to livestock health resulting from grazing adjacent to treated roads. The potential for creation of soil contamination via leaching, effects on meat quality, and risk to organic certification were alsoevaluated.

The assessment included ecotoxicity testing of the products and of leachate from soils treated with typical application solutions of the products. The soil leachate was also chemically analysed.

Toxicity tests were conducted on five test species (Ceriodaphnia cf dubia, microalgae, aquatic duckweed, freshwater shrimp, and rainbow fish). The 48-hr Ceriodaphnia cf dubia acute toxicity test was the most sensitive test, followed by the 72-hr microalgal growth inhibition test. The NOECs for the remaining three tests were greater than the maximum test concentration of 1000 mg/L. The soil leachate for GRT7000 and GRT8000/GRT9000 had significantly lower toxicity than products themselves.

Ecological Risk-based screening levels (RBSLs) were calculated for GRT7000 and GRT8000/GRT9000 using the Burr Type III statistical distribution (BT III SD) method (ANZECC and ARMCANZ, 2000). The Ecological RBSLs were 12.1 mg/L and 110 mg/L for GRT7000 and GRT8000/GRT9000 respectively. The dilution factor required to achieve a "no effect" concentration was then calculated using the Ecological RBSLs. The required dilution factors applied to a direct spill of the application solutions, which are mixed at a 6:1 water: product ratio, were 11.8 and 1.3 times for GRT7000 and GRT8000/GRT9000 respectively.

The event of a direct spillage into a water body of the *application solution of GRT 7000 or GRT8000/GRT9000 may result in potential harm to a water environment assuming the dilution within the receiving water body is less than the defined dilution factors (1.3 or 11.8). The dilution factors presented and the Ecological RBSLs above can be used for further site-specific assessment of spill events.

The toxicity of the soil leachate was used qualitatively to consider the potential effects on aquatic receptors of run-off entering a waterbody. Soil leachates were less toxic than the products, and the dilution factor calculated for the application solution is therefore conservative for assessment of the run-off. The above levels of dilution for all three products are considered very likely to occur. The risk to aquatic receptors from treated roads via leaching and run-off is therefore considered low

ERM also developed soil ingestion risk based screening levels (Livestock RBSLs) which represent a concentration of each chemical in soil that is not likely to result in a risk to health of the cattle. Following the derivation of the soil ingestion Livestock RBSLs, the concentration of the stabilisation products in the roadway soils was calculated and compared with the Livestock RBSLs. This identified that there is no significant risk to cattle health from exposure to the products in a stabilised roadway.

*Please contact Global Road Technology

ERM also investigated the potential risks with respect to the beef cattle marketplace (e.g. Australian market, EU market or organic market) through a review of relevant government import/export and organic certification guidelines.

ERM found that the Australian Government have not assessed these products for export of cattle, however this is considered to be due to their low risk to export. As such, it is considered that use of these products on cattle farms will not result in market risks. However, ERM considers that there is a potential risk to organic certification if the products were used in field with current certification.

1 INTRODUCTION

1.1 COMMISSION

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by Global Road Technology (GRT) to assess the potential ecological risks associated with the use of GRT7000, GRT8000 and GRT9000 for dust suppression on roadways in Queensland.

1.2 PROJECT BACKGROUND

GRT manufactures products used in road stabilization and dust control in farming, mining, construction, and other industries. GRT products are diluted in water and applied to existing soil in the normal watering, grading, or profiling process.

GRT7000 is a bonding/capping agent, which consists of a non-ionising liquid polymer. GRT7000 concentrate is diluted with water. GRT8000 and GRT9000 are dust suppressants, consisting of biopolymers and surfactants. They are used for road stabilization and surfacing, creating a hard, semi-flexible, and water impermeable road surface, which prevents dust, pot holes, rutting, corrugation and other surface degradation caused by heavy traffic or extreme weather. GRT8000 and GRT9000 are very similar products and can be used interchangeably. They are referred to as GRT8000/GRT9000 in the report. The GRT products are diluted at a ratio of one to six with water.

This report focuses on the application of GRT7000 and GRT8000/GRT9000 to access roadways in Queensland. There is limited potential for leaching from the roadways once the products have polymerized; however, as with any liquid product, there is a potential for spills.

1.3 OBJECTIVES

The objectives of this report were to:

- review the use of the dust suppression/road stabilisation products GRT7000, GRT8000 and GRT9000 and identify the potential pathways via which the products may reach aquatic ecological receptors or livestock;
- evaluate the aquatic toxicity in accordance with the Australia and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000) guidelines for fresh and marine water quality;

- evaluate the likely toxicity of the products and stabilised soils to cattle using published toxicity data; and
- estimate exposure to the products based on their intended use and assess the potential risks the aquatic environment and livestock that may be associated with this exposure.

1.4 SCOPE OF WORK

The scope of work included:

- scheduling chronic and acute ecotoxicological analysis for the productstabilised soils and the raw product. Ecotoxicity testing was conducted for a suite of four aquatic species, including fish. It is noted that GRT has already provided the results of ecotoxicity testing using the freshwater cladoceran *Ceriodaphnia cf dubia* undertaken on aqueous dilutions of GRT7000 and GRT8000/9000 and on the leachate from soil samples stabilised with each product;
- evaluating the mobility of the chemical components of the products in the environment using the results of laboratory chemical analysis of the soil leachate. This analysis established the chemical concentrations in the soil leachate used for testing ecotoxicity¹;
- calculating the amount of product in the stabilised soil sample based on the GRT rate of application of product to soils. This was compared to the soil leachate analysis and used to indicate the extent to which the soil stabilisation process reduces the availability of the product in the environment following stabilisation;
- reviewing the MSDS for GRT7000, GRT8000 and GRT9000 for currency and compliance and evaluating the toxicity of the chemicals and any breakdown products to livestock using published toxicological data.;
- evaluating the aquatic toxicity of the products using the ecotoxicity testing results (including the results of the aquatic ecotoxicity tests provided by GRT);

ENVIRONMENTAL RESOURCES MANAGEMENT AUSTRALIA

¹ Note that ERM considers that the ecotoxicity test media provides a better guide to environmental leachability than a standard Toxicity Characteristic Leaching Procedure, which is designed to simulate the effects of municipal landfill leachate and not relevant to this assessment.

- reviewing the use of the dust suppression products and identifying the potential pathways via which the products may reach the aquatic environment. The potential risks of the products for aquatic organisms under a variety of plausible exposure scenarios were explained. The assessment does not provide quantitative prediction of exposure to aquatic environments, since this will be highly dependent on the actual site conditions, and we consider that a generic assessment will be able to be applied to multiple sites;
- using the ANZECC and ARMCANZ (2000) method to calculate a riskbased screening level (RBSL) for surface water protective of 95% of species. The RBSL will be used to calculate the level of dilution required to reach a "no effect" concentration; and
- preparing a report that will be suitable for presentation to stakeholders, including the DEHP, to allow understanding of the potential risks associated with the products.

APPROACH

2

Agriculture is the dominant land use in the area where GRT products are applied in Queensland. Potential ecological receptors of runoff from the roadways considered in this report include aquatic receptors and livestock. The assessment of risk to livestock focused on cattle.

The risk assessment was conducted in accordance with the following relevant Australian and international guidelines including:

- enHealth 2013. Environmental Health Risk Assessment. Department of Health and Ageing, Government of Australia, Canberra.
- ANZECC and ARMCANZ (2000) National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- API (2004) API 4733. Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons.

This report used a risk-based approach with the following steps:

- Receptor Selection;
- Pathway Evaluation;
- Hazard Assessment;
- Exposure Assessment; and
- Risk Characterisation.

The specific approaches used for aquatic receptors and livestock are detailed below.

2.1 AQUATIC RECEPTORS

Receptor Selection

The aquatic receptors considered in this assessment were species that were considered representative of the different taxa that could be present in the water column in water holes or streams on farm properties. These include algae, zooplankton, and fish.

Pathway Evaluation

This assessment considered direct contact of aquatic receptors with surface water. It did not consider the interaction of GRT7000 or GRT8000/9000 with sediment or the exposure of aquatic receptors to chemical residues in sediment.

Toxicity Assessment

Two types of samples were submitted for toxicity testing and chemical analysis:

- 1. Samples of GRT7000 and GRT8000/9000; and
- 2. Soil stabilised with GRT7000 and GRT8000/9000.

The soil samples were leached, and the toxicity tests and chemical analysis were conducted on the leachate. The product samples were diluted with water to produce a series of test solutions at different concentrations.

ERM received analytical reports from GRT for ecotoxicity testing undertaken on GRT7000 and GRT8000/9000 and leachate using the freshwater cladoceran *Ceriodaphnia cf dubia* in 2013.

The *Ceriodaphnia cf dubia* results were used in conjunction with four additional toxicity tests for each product run in March 2014. The selected toxicity tests considered a range of taxa and included both acute and chronic toxicity tests. The toxicity tests performed for this assessment were:

- 72-hr Microalgal growth inhibition (cell yield) test using the freshwater algae *Selenastrum capricornutum* (based on USEPA method 1003.0, 2002).
- 7-day Growth inhibition of the freshwater aquatic duckweed *Lemna disperma* (based on OECD method 221, 2006).
- 96-hr acute survival test using the freshwater shrimp *Paratya australiensis*, or *Macrobrachium australiensis*.
- 96-hr Fish imbalance toxicity test using the eastern rainbowfish *Melanotaenia splendida splendida*.

The tests were run on dilution series of GRT7000 and GRT8000/9000. The toxicity tests yielded EC_{50} (effective concentration, 50%) values, IC_{50} (inhibitory concentration, 50%), and no observable effects concentrations (NOECs), which are measures of toxicity i.e. they define the relationship between dose and response for the chemical mixtures assessed. Detailed toxicity test methodology is provided in the Ecotox reports included in *Annex A*.

Exposure Assessment

Exposure assessment involves quantification of chemical intake. Since this risk assessment takes a predictive approach to assessing risk rather than determining risks associated with a known release, exposure was not quantified. Exposure assessment was therefore limited to identification of potential pathways for exposures to occur.

Risk Characterisation

The risk characterisation applied the ANZECC and ARMCANZ (2000) method to calculate a risk based screening level (RBSL) for surface water protective of 95% of species. The RBSL for each product was used to calculation a dilution factor, representing the dilution of the application solution required to achieve a no-effect concentration in the surface water.

2.2 LIVESTOCK

Receptor Evaluation

The risk assessment focuses on cattle, since cattle are the main type of livestock kept in the vicinity of the Queensland access roads considered in this assessment.

Pathway Evaluation

The assessment considers the primary of intake from soil ingestion from the roadways, and this is consistent with the approach used by the API (2004). The intake from drinking water on cattle was not assessed, as the ecological risk assessment for leaching or run off to a surface water receptor or a direct spill considers species that are more sensitive than cattle.

Toxicity Assessment

The methodology derives Toxicity Reference Values (TRVs) by evaluation of available mammalian studies, focused on chronic or life sensitive stage studies. The methodology focuses on the protection of livestock at the population level (e.g., mortality, growth, and reproduction) of ecological organisation and accordingly used doses at or below which no adverse health effects to the indicator species are expected, even if exposure occurs over an extended duration. This approach is consistent with the ANZECC (2000). In addition, the methodology applies methods to extrapolate data from studies on mice and rats for the development of TRVs for beef cattle using body weight scaling methodology (API, 2004; Sample and Arenal, 1999).

Exposure Assessment

The methodology used relevant exposure parameters within the range of values used in the ANZECC (2000) guidelines. The assessment was done for beef cattle using the assumed body weight of 454kg (API, 2004) and a soil intake rate of 2.13 kg /day (API, 2004). Potential exposure of cattle to the component chemicals in the products was quantified.

Risk Characterisation

The risk characterisation compared the calculated exposure to each chemical to the TRV for each chemical. The risk associated with the product was estimated assuming the toxic effect is additive.

3 PRODUCT APPLICATION

Information in this section was provided by GRT. As noted in *Section 1.2*, GRT products are used on unsealed roadways predominantly for stabilisation of pavements, high traffic areas and for mending potholes. They can also be used for the suppression of dust and providing a stronger and hydrophobic surface which makes the roadway (or high traffic area) more durable.

If the GRT products are to be used for road stabilisation, the surface must be "ripped" with rotary hoe. This is where the upper surface of the roadway is effectively ploughed to allow the soil to have a higher surface area for the application of the GRT product. This is not required if the GRT products are to be used solely for dust suppression.

Prior to the application of GRT products, a light spray of water must be applied to the road.

The GRT products are mixed according to the manufacturer's specifications which will vary from site to site according to soil type, predicted traffic loading and climate conditions. GRT7000 and GRT8000/9000 are stored in IBC containers and mixed with water in a water truck. The ratio of product mixed with water will generally be dependent on:

- soil conditions and the amount of water required to bring material to its optimum moisture content – in drier conditions, more water will be required;
- 2. soil cohesiveness for less cohesive soils, more product will be required; and,
- 3. road strength required for heavy vehicles (e.g. mining haul trucks), more product will be required.

This product-water mix is then applied to the surface via the water truck in the same method as water application. It is sprayed from the back of the truck. A multi-tyre roller following immediately behind the water truck must complete a minimum of three passes to compact the road, starting along the shoulder of the road and returning on the crown. The first applications should be completed at least an hour apart to allow for maximum penetration and binding. The next application should be done within two days of the initial two applications. The final application should be done no less than 14 days after the third application. Once the four applications are complete, the roadway is complete and ready for traffic.

4 LABORATORY ANALYSIS AND RESULTS

4.1 METHODOLOGY

GRT supplied undiluted samples of GRT7000 and GRT8000/9000 soil samples treated with 3% GRT7000 and 3 % GRT8000/GRT9000 by weight to Ecotox Services Australia Pty Ltd (Ecotox), Lane Cove, NSW a NATA accredited toxicity testing facility. Ecotox submitted the samples and leachate to ALS Environmental Limited (ALS), Sydney, NSW, for chemical analysis.

Samples of GRT7000 and GRT8000/GRT9000 and soil samples stabilised with the GRT products were submitted to Ecotox on 15 July 2013 for the 48-hr acute toxicity test using *Ceriodaphnia cf dubia*. The tests were conducted following a procedure based on USEPA (2002) and Bailey et al. (2000).

The samples for the remaining toxicity tests were submitted to Ecotox on 10 March, 2014. As noted in *Section* 2.1, the toxicity tests conducted included:

- 72-hr Microalgal growth inhibition (cell yield) test using the freshwater algae *Selenastrum capricornutum* (based on USEPA method 1003.0, 2002).
- 7-day Growth inhibition of the freshwater aquatic duckweed *Lemna disperma* (based on OECD method 221, 2006).
- 96-hr Acute survival test using the freshwater shrimp *Paratya australiensis*, or *Macrobrachium australiensis*.
- 96-hr Fish imbalance toxicity test using the eastern rainbowfish *Melanotaenia splendida splendida*.

A dilution series was prepared for the toxicity tests using the GRT products and dilute mineral water. For the *Ceriodaphnia cf dubia* tests, the highest test concentration was 400 mg/L. The *Ceriodaphnia cf dubia* dilution series also included test concentrations of 6.3 mg/L, 12.5 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, and 200 mg/L, as well as a dilute mineral water control. For the remaining toxicity tests, the highest test concentration was 1000 mg/L. The dilution series also included test concentrations of 62.5, 125.0, 250.0, 500.0, and 1000.0 mg/L.

For the leachate tests, 100 g of soil stabilised with the GRT products was added to 0.9 L of dilute mineral water and mixed for 24 hours with a magnetic stirrer. The mixture was then left to settle for one hour and the leachate was syphoned off and a dilution series ranging from 6.3 mg/L to 100 mg/L was prepared for toxicity testing and sub-samples of the soil leachate for both GRT7000 and GRT8000/GRT9000 were submitted to ALS for analysis. Within the eco-toxicological laboratory, this soil leachate water was defined as the water available fraction (or WAF), however for the purposes of this report, ERM refer to this water as the soil leachate.

The soil used for the preparation of the samples was reportedly derived from a greenfield site within a forest. The soil was a light brown sandy silt. The treatment resulted in a sample with a surface coating of product. The samples were crushed for the leaching procedure, and the leachate therefore represents leaching from both the treated and untreated portion of the soil sample. This is considered representative of real environmental conditions.

The samples submitted to ALS were analysed for metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury), total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, polycyclic aromatic hydrocarbons (PAHs), total recoverable hydrocarbons, and semivolatile organic compounds (SVOCs). It should be noted that analysis for the concentration of the polymerised product within the leachate sample was not available.

More detailed information regarding the methods employed by Ecotox and the results obtained are provided in the laboratory reports in *Annex A*. The ALS laboratory reports are included in *Annex B*.

4.2 RESULTS

4.2.1 Toxicity Testing

A summary of the toxicity test results is presented in the tables below. Both the most commonly reported endpoint for the test (i.e. the IC_{50} or EC_{50}) and the NOEC were included in the tables.

Table 4.1Toxicity Test Results for GRT7000

Test	NOEC	IC50	EC50
Ceriodaphnia cf dubia 48-hr acute	6.3		15.3
toxicity test			
Microalgal 72-hr growth inhibition	500	>1000	
Duckweed 96-hr growth	1000	>1000	
Shrimp 96-hr survival	1000		>1000
96-hr fish imbalance	1000		>1000
All values in mg/L			

Table 4.2Toxicity Test Results for GRT7000 Soil Leachate

Test	NOEC	IC50	EC50
<i>Ceriodaphnia cf dubia</i> 48-hr acute toxicity test	50,000		93,400
All values in mg/L			

Table 4.3Toxicity Test Results for GRT8000/GRT9000

Test	NOEC	IC50	EC50
<i>Ceriodaphnia cf dubia</i> 48-hr acute toxicity test	100		217.1
Microalgal 72-hr growth inhibition	250	>1000	
Duckweed 96-hr growth	1000	>1000	
Shrimp 96-hr survival	1000		>1000
96-hr fish imbalance	1000		>1000
All values in mg/L			

Table 4.4Toxicity Test Results for GRT8000/GRT9000 Soil Leachate

Test	NOEC	IC50	EC50
<i>Ceriodaphnia cf dubia</i> 48-hr acute toxicity test	6,300		10,900
All values in mg/L			

Ceriodaphnia cf dubia 48-hr acute toxicity test yielded the lowest NOECs for both GRT7000 and GRT8000/GRT9000, followed by the microalgal 72-hr growth inhibition. For the remaining tests on GRT7000 and GRT8000/GRT9000, the NOECs were 1000 mg/L i.e. the maximum concentration in the dilution series tested. The NOECs for these tests therefore present a very conservative measure of toxicity.

Ceriodaphnia cf dubia were more sensitive to GRT7000 than to GRT8000/GRT9000; however, the reverse was noted for the *Ceriodaphnia cf dubia* test on GRT7000 and GRT8000/GRT9000 soil leachate samples. The microalgal 72-hr growth inhibition test also yielded a lower NOEC for GRT8000/GRT9000 than for GRT7000.

GRT7000 and GRT8000/GRT9000 soil leachate samples had significantly lower toxicity than GRT7000 and GRT8000/GRT9000, particularly for GRT7000 where the values differed by five orders of magnitude.

4.2.2 Soil Leachate Chemical Analysis

The analytical results of the two soil leachates from the GRT7000 and GRT8000/9000 from ALS indicated that:

- analysis for the polymerised product was not available;
- all TRH, BTEX, PAHs, SVOCs and VOCs were below their detection limits;

- metal concentrations were detected and are considered likely to be related to the leachate from the soils component of the mixture. The exception to this is nickel, which may be present within GRT 8000/9000. The nickel concentrations in the GRT8000/9000 soil leachate were over twice the concentration in the GRT7000;
- total organic carbon.(TOC) concentrations were 10 mg/L and 9 mg/L for GRT7000 and GRT 8000/9000 respectively. It was considered that as this soil (silty sand) was derived from within a forest, there is a high potential for this TOC concentration to be related to soil organic material, such as humic substances that were not detected within the TRH or PAH analysis;
- styrene is one of the polymer primers present in both GRT7000 and GRT8000/9000. It was not detected in either sample, however as this compound is considered volatile, the sample preparation method is likely to have allowed the volatilisation of any potential styrene within the soil leachate;
- chemical oxygen demand was 61 mg/L and 37 mg/L in GRT7000 and GRT8000/9000 respectively;
- biological oxygen demand was <2 and 3 in GRT7000 and GRT8000/9000 respectively; and
- pH values were generally neutral at 7.65 and 7.18 in GRT7000 and GRT8000/9000 respectively.

CHEMICAL AND TOXICITY PROFILES FOR LIVESTOCK ASSESSMENT

The assessment of the toxicity of the products with regards to cattle has been undertaken without the benefit of direct ecotoxicological analysis on the whole products as was undertaken for the aquatic species defined for surface water environments. As such, the chemical compositions of the products, as defined in their relevant MSDS sheets has been reviewed. The toxicity of each chemical component of the products was investigated. Following this, a list of the chemicals of concern was created, in which those chemicals that might potentially be toxic to cattle were identified for quantitative evaluation.

5.1 CHEMICAL PROPERTIES OF GRT7000

5

GRT7000 is a copolymer based on styrene acrylate in a water soluble emulsion. GRT7000 can be used in preparation, stabilisation, encapsulation and binding of various soils, aggregates, minerals and biogenic substances. It is used in road making operations to form a road sub-base layer. The product also has applications in the primary production industries to form impervious hardstand areas.

GRT7000 is a white liquid which is slightly alkaline with a pH typically ranging between 8 and 9.5. The chemical agents in GRT7000 are soluble in water and non-volatile.

Information on the chemical composition of GRT7000 was restricted to the ingredients listed in the Material Safety Data Sheets (MSDS) which is provided in *Annex C*. The composition of GRT7000 is presented in *Table 5.1*. It is noted that trace constituents, that may include organic chemicals and metals, are not listed within the MSDS.

Table 5.1Chemical Composition of GRT7000

Chemical Name	CAS No.		
Hybrid-styrene copolymer	Proprietary		
Water	7732-18-5		
Other Non-Hazardous Ingredients	Proprietary		
1. Refer to MSDS in Annex C.product	:		
. Exact ration of components may vary slightly.			

5.2 CHEMICAL PROPERTIES OF GRT8000 AND GRT 9000

GRT8000 and GRT 9000 are polymerised bitumen preparations which are mixed with various soils and aggregates used in road making operations and for dust control purposes. These products are suitable for highways, pavements, urban roads and rural roads.

GRT8000/9000 is an opaque brown liquid which is alkaline with a pH typically ranging between 9 and 11. The products are water soluble and non-volatile.

Information on the chemical composition of GRT8000 and GRT900 were restricted to the ingredients listed in the MSDSs which are provided in *Annex C*. These products are considered to be the same, however the MSDS sheets present slightly different percentage ranges for the chemical compositions.

The composition of GRT8000 is presented in *Table 5.2* and the composition of GRT9000 is presented in *Table 5.3*. It is noted that trace constituents, that may include organic chemicals and metals, are not listed within the MSDS.

Table 5.2Chemical Composition of GRT8000

Chemical Name	CAS No.	
Bitumen	8052-42-4	
Emulsifier	Proprietary	
Hybrid -styrene polymer	Proprietary	
Water	7732-18-5	
Other Non-Hazardous Ingredients	Proprietary	
1 Before to MCDC in Annow C		

1. Refer to MSDS in *Annex C*.

2. Exact ratio of components may vary slightly.

Table 5.3Chemical Composition of GRT9000

Chemical Name	CAS No.
Bitumen	8052-42-4
emulsifier	Proprietary
Hybrid-styrene copolymer	Proprietary
Water	7732-18-5
Other Non-Hazardous Ingredients	Proprietary
1. Refer to MSDS in <i>Annex C</i> .	

2. Exact ratio of components may vary slightly.

5.3 CHEMICALS OF CONCERN

The primary chemicals of concern, based on the information provided in the MSDS, include:

- bitumen;
- hybrid-styrene copolymer; and
- emulsifier

ERM entered into a confidentiality agreement with the proprietor, which allowed ERM to review the proprietary chemical components of the products. The proprietary chemicals reviewed are only referred to in general terms in this report. The proprietary information related to the composition and identities of the primary chemicals (or chemical mixes) of concern listed above.

All three of the primary chemicals of concern comprise a mixture of chemical compounds, primarily mixtures of polymer primers and petroleum hydrocarbons. In order to assess the risks to livestock, the individual components were investigated. Non-hazardous ingredients were not included. It was found that for many of the components, valid toxicological data relevant to mammalian toxicity assessment did not exist. Consistent with risk assessment methodologies for petroleum mixtures (CRC CARE, 2011; TPHCWG, 1997), surrogate compounds were chosen to represent the varying chemical mixtures. Listed below are the chemical mixtures that make up the each GRT product assessed and the percentage calculated of each in each GRT product.

Table 5.4Estimated compositions of the products

* Please Contact Global Road Technology

The above percentages have been taken from the MSDS sheets for the overall products and then from estimates in literature for further breakdown, including:

- WHO International Programme on Chemical Safety, Inchem *Concise* International Chemical Assessment Document 59, Asphalt (Bitumen), 2004.
- Total Petroleum Hydrocarbon Criteria Working Group Series, *Volume 2 Composition of Petroleum Mixtures*, May 1998.

6 TOXICITY ASSESSMENT

6.1 TOXICITY REFERENCE VALUES FOR AQUATIC ECOLOGICAL RECEPTORS

The toxicity of complex mixtures is most effectively assessed by conducting product-specific toxicity tests, as toxicity reference values (TRVs) for individual chemicals may fail to take into account additive, synergistic, or antagonistic effects of chemicals mixed together. The toxicity assessment for aquatic ecological receptors was therefore based exclusively on the results of the Ecotox toxicity tests presented in *Section 4.2.1*.

6.2 TOXICITY REFERENCE VALUES FOR LIVESTOCK

The toxicity to livestock was not able to be assessed based on tests for cattle exposure directly to the products in the same way as for ecological receptors. ERM has undertaken this assessment consistent with ANZECC (2000) and United States Environmental Protection Authority (USEPA) (2004) guidance and the API (2004) methodology. The selection of relevant toxicity data focused on the protection of livestock at the population level (e.g., mortality, growth, and reproduction) of ecological organisation and accordingly used doses at or below which no adverse health effects to the indicator species are expected, even if exposure occurs over an extended duration. As such, higher weight in the development of toxicity reference values (TRVs) was given to the available studies based on no adverse population level effects.

The studies on toxicity of the component compounds in GRT7000, GRT8000 and GRT9000 (bitumen, the emulsifier and acrylic polymers) and the hazards associated with exposure levels that could potentially occur during the application and use are presented in the toxicity profiles presented in *Annex D*.

The TRVs were calculated using the following equation:

TRV = NOAEL \times sf

(Equation 1)

where TRV = toxicity reference value (mg/kg-d)

NOAEL = Chronic No Adverse Effects Level (mg/kg-d)

sf = body weight scaling factor (unitless)

None of the chemical components of the GRT7000, GRT8000 or GRT9000 products evaluated had toxicity data available in literature for livestock. Therefore, toxicity data selected to apply to beef cattle are from much smaller animals (e.g. rats and mice). Extrapolation from the small weight test animals was done using published methods for developing ecological benchmarks (API 2004; Sample et al. 1996; Sample and Arenal 1999).

A body weight scaling factor was applied to allometically adjust for the body weight differences. The body weight scaling factor is calculated using the following equation (API 2004; Sample and Arenal 1999):1

$$SF \qquad 1 \frac{BW Testspecies}{BW Target species} \qquad 4 \qquad (Equation 2)$$

where BWtestspecies = body weight of the test species (kg)
BWtargetspecies = body weight of the target species, beef cattle
(kg).

For body weight scaling calculations target species body weights were assumed to be 0.035 kg for mice, 0.35 kg for rats and 10 kg for dogs (ANZECC, 2000).

Where chronic data or data representing NOAELs were not available, an uncertainty factor was considered in the development of the TRV using the following equations:

or

$$\frac{ChronicNOAEL}{UF}$$
(Equation 4)

where UF – uncertainty factor [For sub-chronic to chronic extrapolations and LOAEL to NOAEL extrapolation an UF of 10 was applied (ANZECC, 2000; API, 2004)].

LOAEL = Lowest Adverse Effects Level (mg/kg-d)

7 EXPOSURE ASSESSMENT

Fundamental to the risk assessment process is the development of a Conceptual Model, which is the qualitative description of the plausible mechanisms by which receptors may be exposed to chemicals. For exposure (and therefore risk) to be considered possible, a mechanism ('pathway') must exist by which a chemical can reach a given receptor. A complete 'source-pathway-receptor' exposure mechanism is referred to as a 'SPR linkage'.

The potential SPR linkages are evaluated for completeness based on the existence of:

- a potentially hazardous chemical source;
- a mechanism for release of the chemical or hazard from the source;
- potential receptors that are sensitive to the hazard; and
- a mechanism for receptors to come into contact with the chemical.

Whenever one or more of these elements are missing, the SPR linkage is incomplete and the potential risk to the identified receptor is considered unlikely. This mechanism for analysing potential risks is relevant to both livestock and ecological risks. A summary of the SPR linkages are summarised in *Table 7.1*.

Table 7.1Key source-pathway-receptor linkages

Source	Pathway	Receptor	Link?	Discussion	Quantitative Assessment?
Ecological A	Assessment		1		
Product from water truck	Direct contact – spill into surface waters	Ecological receptors in surface water	Y	In the event of a spill, GRT products could potentially reach surface water bodies and ecological receptors in those water bodies. RBSLs were calculated for GRT7000 and GRT8000/GRT9000 based on the toxicity test data. Aquatic ecological receptors would not be exposed to the full strength product. The products are generally diluted to 1:6 ratio with distilled water prior to application. Further dilution would occur upon release into the environment, including dilution in drainage ditch water, streams, groundwater, and/or water holes. The dilution factor required to meet the calculated RBSLs was therefore calculated.	Y
Stabilised soil*	Overflow/ run off	Ecological receptors in surface water	Y	Due to the nature of the products, following polymerisation or stabilisation, there is limited potential for leaching. The products are hydrophilic to ensure that the roadway does not weather easily. As such, it is unlikely that much water will drain through the stabilised roadway. It is also considered that run-off from the roadways is unlikely to contain significant quantities of dissolved chemicals from the products due to the limited period of time that the	N
	Infiltration/ migration		Y	water would be in contact with the roadway. The chemical analysis of the soil leachates supports this expectation (see <i>Section 4.2.2</i>). ERM consider that the leachate test method involving crushed samples of a higher concentration than used in the field followed by a 24 hour period of leaching will provide a much higher concentration than would be expected from rainfall runoff or leaching through the roadway soils.	N
Livestock A	ssessment				
Stabilised soil	Direct contact - dermal exposure	Livestock	Y	There is potential for livestock to come in direct contact with the stabilised soil following the "setting" period (after 72 hours of application and polymerisation). Should livestock graze near the roadway and potentially lie on the roadway, they will be exposed to the stabilised soil. The dermal absorption of petroleum hydrocarbons in livestock is considered a minor exposure pathway due to their thick coats. Health effects from dermal exposure to hydrocarbons have been shown to be negligible for most terrestrial mammals (API, 2004).	N
	Accidental ingestion	Livestock	Y	There is potential for livestock to ingest either dusts from the roadway or accidentally eat roadway soils during grazing. Livestock are known to ingest hydrocarbons from pipe leaks and this may be due to curiosity or for adding salt to their diet. They are also known to ingest a substantial amount of soil in their diet. This is considered to be the most effective potential exposure pathway (API, 2004). This may be mitigated if livestock are rotated through a property where the roadway is only present in some fields. This potential exposure is considered quantitatively in <i>Section 8.2</i> .	Y

Source	Pathway	Receptor	Link?	Discussion	Quantitative
					Assessment?
	Inhalation	Livestock	Ν	The potential for inhalation of the stabilised soil products is marginal. The volatile components of the mixture are primers for the polymer setting agents. Once the polymer is set, it is considered unlikely that volatiles will be present within the stabilised soils. Also with regards to any residual vapours, as the roadways are sited outdoors so there is a low likelihood for the accumulation of any potential vapours due to the rapid dilution and dispersionin ambient air. [API, 2004]. An added factor of safety would be provided given that it is unlikely that cattle will be within the vicinity during the setting period and as such are unlikely to come in contact with the volatile primers. If the cattle were in the area, the exposure would be acute rather than an ongoing chronic exposure over the course of a life time. As such, for the purposes of the cattle assessment, the products are not considered to be volatile.	Ν

8 RISK CHARACTERISATION

8.1 AQUATIC RECEPTOR RISK CHARACTERISATION

8.1.1 Soil Leachate Results

For the purposes of assessing the environmental mobility of potential contaminants in the soil, two soil samples were prepared for the soil leachate analysis. The first soil sample was treated with GRT7000 by weight and the second sample was treated with GRT8000/GRT9000 by weight.

It should be noted that the application methodology suggests that in the worst case scenario only 0.38% of product is actually applied to soils (See *Section* 8.2.2). It should also be noted that the soil leachate method, described in *Section* 4.1, is very aggressive compared to what could be expected from leachate from rainfall run off or infiltration. As such, the quantity of p r o d u c t in the samples and the leachate procedure are considered likely to yield higher concentrations in the leachates than would be expected in the field.

Styrene, a component chemical with significant aquatic toxicity was not detected in the leachates from the GRT7000 and GRT8000/9000 treated soil samples. However, it is considered likely that styrene, as with all other VOCs and potentially SVOCs, if present in the soil sample would have volatilised during the leaching procedure. This is considered reasonably comparable to what would be expected in the environment in the event that leachable styrene remained in the stabilised roadway for a period of time after application.

The measured pH did not indicate impacts from the products since as the leachates from both soil samples were neutral. GRT7000 is neutral and GRT8000/9000 are alkaline. Neutral treated soil indicates fully reacted products in the samples without sufficient excess to exceed the soil's buffering capacity.

TOC concentrations were 10 mg/L and 9 mg/L for GRT7000 and GRT 8000/9000 respectively. It was considered that as this soil (silty sand) was derived from within a forest, there is a high potential for this TOC concentration to be related to soil organic material, such as humic substances that were not detected within the TRH (including BTEX) or PAH analysis or any of the other identified toxic organic compounds.

Overall, although the application of this analysis is limited, it does indicate that the leached fraction via rainfall runoff or infiltration through the sealed soils is unlikely to yield concentrations of the key toxic organic contaminants of interest above detection levels.

ENVIRONMENTAL RESOURCES MANAGEMENT AUSTRALIA

8.1.2 Ecological RBSL Calculation

ANZECC and ARMCANZ (2000) puts forward two methods to derive water quality screening values:

- a risk-based statistical distribution approach; and
- an assessment factor (AF) approach.

Where possible, ANZECC recommends using the statistical distribution approach; however, the data set must meet certain criteria to use this method. The two approaches are described below.

Statistical Distribution Approach

The statistical method used by ANZECC is called the Burr Type III statistical distribution (BT III SD) method developed by Shao (2000) which was based on the Aldenburg and Slob (1993) method. Depending on the availability of data, either a high reliability or a moderate reliability guideline was derived using the BT III SD method.

In order to derive a screening level via the risk-based statistical distribution approach, toxicity data from at least five (5) different species from four (4) different taxonomic groups are required. If there are sufficient NOEC data from chronic or sub-chronic tests, a high reliability Ecological RBSL can be calculated. If acute, rather than chronic or sub-chronic, data are used, the value derived is characterised as a moderate reliability screening level.

Assessment Factor Approach

The AF approach is used to derive screening levels when there is insufficient data to derive screening levels via the statistical distribution approach. An AF is a value applied to toxicity data to account for the uncertainty associated with using laboratory toxicity data for one species collected over a relatively short period of time in a controlled environment to set a trigger level that is protective of long-term exposure for a range of organisms in variable field conditions.

As such, the magnitude of the AF depends on whether acute or chronic toxicity data are available and the degree of confidence in whether the figures reflect the field situation. Most of the AFs are multiples of 10, with larger factors applied where there is less certainty in the data.

The acceptable types of single-species toxicity data and corresponding AFs applied to derive the Ecological RBSLs are summarised in *Table 8.1*.

Table 8.1Toxicity Data Requirements for AF Application

Type of Toxicity Data	Minimum Data Requirements (toxicity data	Assessment
	points)	Factor
Chronic NOEC	1 x fish NOEC, 1 x invert NOEC, 1 x algae NOEC	20
Acute LC ₅₀ /EC ₅₀	3 or greater	100
Lowest Chronic NOEC	2 or less	200
Any toxicity data	2 or less	1000

Note that while 3 or more data points are required to apply an AF of 20 or 100, the AF is applied only to the lowest of the toxicity data points.

Approach Applied to Calculate RBSLs

The toxicity tests run on GRT7000 and GRT8000/GRT9000 by Ecotox met the minimum criteria for applying a statistical approach. RBSLs were calculated using the BurrliOZ statistical software. BurrliOZ was developed by CSIRO for Environment Australia, and uses the Burr Type III distribution to estimate the concentration of a chemical such that a given percentage of species will survive. It gives users the flexibility to obtain a range of trigger values depending on the level of species protection required (i.e. 80%, 95%, or 99% species protection). Greater detail regarding the BT III SD method is provided in Warne (2001) and Shao (2000). A summary of the input data and the BurrliOz output is presented in *Table 8.2*. For the purpose of deriving Ecological RBSLs for the GRT products, a 95% species protection level was applied.

Table 8.2BurrliOz Output for GRT7000 and GRT8000/9000

Product	RBSL protective of 95% of species (mg/L)
GRT7000	12.1
GRT8000/GRT9000	110

Given that only five toxicity data points were available for each GRT product and that only the 48-hr *Ceriodaphnia cf dubia* acute toxicity test and the 72-hr microalgal growth inhibition test had NOECs lower than the maximum tested concentration, the results were interpreted with caution as they might not adequately address potential risks to the most sensitive species, *Ceriodaphnia cf dubia*. Ecological RBSLs were therefore also calculated using the AF approach and the results compared with the statistically-derived RBSL.

Based on the toxicity data available, an AF of 100 was applied to the NOEC data from the toxicity test. RBSLs were calculated for the two test species for which the NOECs were lower than the maximum test concentrations, as well as for the maximum test concentration.

Product	Based on <i>Ceriodaphnia cf dubia</i> (mg/L)	Based on Microalgae (mg/L)	Based on Maximum test Concentration (mg/L)
GRT7000	0.063	5	10
GRT8000/GRT9000	1	2.5	10

Table 8.3Ecological RBSLs Calculated Using AF Approach

For both GRT7000 and GRT8000/9000, the Ecological RBSL derived using BurrliOz was greater than the Ecological RBSL calculated using the AF approach on the maximum test concentration. The statistically-derived Ecological RBSL would not be protective of *Ceriodaphnia cf dubia* in the event that the organisms were to come into contact with the full strength product. The risk of this occurring is considered negligible. Since the products are diluted prior to application and further dilution in the environment is likely, the statistically-derived Ecological RBSLs are considered a reasonable threshold by which to gauge the potential for toxic effects to the majority of aquatic species.

8.1.3 Dilution Factors in the event of a direct spill of application solution

Dilution factors have been calculated to provide an indication of how much dilution of the application solution is required to meet the trigger values in the event of a spill directly to a surface water body. Given that the mixture is already diluted at a ratio of * prior to application. ERM have assumed a 1.02g/mL density (or 143 mg/L).

A dilution factor is the ratio of the quantity of impacted water to the average quantity of diluting water available at the point of disposal or at the point of the receiving water body.

Source of RBSL	Ecological RBSL	Product concentration in water following * dilution within tank	Dilution in potential receiving water body of tank mix of water and product required to meet Ecological RBSL
BurrliOz	12.1 mg/L	143 mg/L	11.8 times

Table 8.4Dilution Factor for GRT7000 application solution

Table 8.5Dilution Factor for GRT8000/9000 application solution

Source of RBSL	Ecological RBSL	Product concentration in water following * dilution within tank	Dilution in potential receiving water body of tank mix of water and product required to meet Ecological RBSL
BurrliOz	110 mg/L	143 mg/L	1.3 times

*Please contact Global Road Technology

8.2 LIVESTOCK RISK CHARACTERISATION

8.2.1 Stock Ingestion Screening Level Calculation

A stock ingestion risk based screening level (Livestock RBSL) is a calculated concentration used as a threshold for screening chemical concentrations in soils. If soil concentrations are below this established chemical concentration, the soil is considered to be unlikely to result in a risk to health of the cattle via ingestion.

Following the API (2004) methodology, Livestock RBSLs for concentrations of chemicals in soil / road materials were calculated using the following equation:

SoilIngestionRBSL
$$\frac{1 \times BW \times TRV}{IRsoil} \times AUF$$
(Equation 5)whereRBSL = Livestock risk based screening level (mg/kg);BW = body weight of beef cattle (kg)TRV = toxicity reference value (mg/kg-d)

IRsoil = stock soil ingestion rate (kg/d)

AUF = Area Use Factor (unitless)

The inputs and results of the calculations are provided in *Annex E, Table E1*. A summary of the resulting RBSLs for each chemical identified to be present within the products is presented in Table 8.6, below.

Chemical Constituent of products (GRT 7000 or GRT8000/9000)	Soil Ingestion Livestock RBSL (mg/kg-day)	Soil Ingestion Livestock RBSL with AUF (mg/kg-day)
Oil	2770.3	277028.1
Styrene	1775.8	177582.1
Polymer Acid	177.6	17758.2
Aliphatics (n-alkanes)	20.0	1997.2
LowPAHs	1775.8	177582.1
HighPAHs	3551.6	355164.3
Asphaltenes	3551.6	355164.3
Hard resins	3551.6	355164.3
Soft resins	3551.6	355164.3
Oils	886.7	88668.5
Waxes	362.3	36234.7
Vanadium	2770.3	277028.1
Nickel	1775.8	177582.1

Table 8.6	. Calculated RBSLs for chemical constituents of GRT 7000 and GRT8000/9000
-----------	---

Body Weight

ERM have used the guidance in the American Petroleum Institute, *Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons*, July 2004.

The body weight used under this guidance was 454kg and this has been used for ERM's calculations. BioSecurity Australia undertakes similar risk assessments and the body weight they use is 500kg. (The lower body weight is considered to be more conservative.

Soil Ingestion

The exposure to soils via ingestion for cattle is via consumption of grasses. It is assumed that soils attached to the edible grasses will be ingested during grazing. It is considered that inadvertent soil ingestion during grazing can comprise a large proportion of the cattle diet. The standard mass of soil conservatively assumed to be ingested is 2.13kg per day (API, 2004).

Note that this soil intake is related to the soil directly under or adjacent to the grasses being eaten. It is unlikely that cattle soil ingestion will come entirely from the soils adjacent to the roadway which could contain the products. It is considered that grazing grasses and plants will not be growing in the actual roadway, though may be growing directly adjacent to the roadway and this may account for exposure to the dust control product.

Area Use Factor

The Area Use Factor was incorporated into the calculation in order to account for the fact that cattle are unlikely to graze continuously on or adjacent to the roadway. ERM considered 1% was a reasonable estimate for the time spent eating adjacent to the roadway and as such, the RBSLs have been adjusted to incorporate this factor.

8.2.2 Soil Concentration Calculation

For comparison to the Livestock RBSLs listed in *Table 8.6*, it is necessary to estimate a reasonable average concentration for each chemical that is assumed to be present in the roadway soil eaten by the cattle. It is designed to represent a "reasonable worst case" concentration. The preparation of the solution prior to application has been summarised in Section 2. ERM have considered the most concentrated solution mix specified. These ratios were used to calculate the concentrations of the chemicals within the water truck prior to application.

The Toxicological Report on GRT7000 and GRT8000/9000 Soil Stabilisers (Annex D) detailed a typical treatment for soil which has been incorporated into this risk assessment to provide an estimate of the volume of product applied per volume of soil.

$$\frac{\text{Volume Applied}}{\text{Area } \times \text{ Depth } \times \text{ Density}} \times 1000 = Concentration in Prepared Soil(L/kg)$$

[Equation 6]

Volume Applied = The product following dilution in the water truck is applied at a rate of 2L per square metre, but the maximum reported rate was 4L per square metre.

Area =
$$10,000 \text{ cm}^2$$
 (1 square metre)

Depth = the product is applied typically at 15 cm depth, a minimum of 10cm depth was applied for the purposes of this calculation to present the most conservative scenario

Soil density =
$$1.5 \text{ g/cm}^3$$

This calculation indicated that 0.00267 L/kg of the diluted application mixture could be expected in the prepared roadway soils, assuming that there is complete and even mixing within the top 10cm, which is the depth that is ploughed. This concentration volume per kg of application solution of the products has been used to calculate the concentration of each product in the roadway soils in mg/kg using Equation 7, below.

$$L \times Concentration of Productin W a erTruck \qquad g \times 1000$$

$$0.0026 \quad \frac{g}{kg} = Concentration in R o adway Soils \qquad \frac{mg}{kg}$$

[Equation 7]

Where the concentration of Products (either GRT7000 or GRT 8000/9000)

The concentration of the product in the roadway soils was calculated using a product concentration in the truck of 0,143g/L and the result was 3809.5mg/kg product in soil for both GRT7000 and GRT8000/9000.

The knowledge of the chemicals within the products in GRT 7000 and GRT 8000 and GRT9000 and the percentage ranges quoted on the MSDS sheets were used to calculate approximate chemical concentrations within stabilised soils. In each case, the highest chemical percentage quoted on the MSDS sheets was used. The percentage was applied to the product concentration in roadway soils calculated using Equation 7 to generate a chemical

concentration in soil.

In the cases of the bitumen and the emulsifier, these represent a suite of compounds that were then further segregated into chemicals whose concentrations were estimated for the purposes of this assessment.

The percentage breakdown for chemical components for bitumen and the emulsifier for the purposes of the assessment are presented below.

Bitumen
Ashaltenes
Hard resins
Soft resins
Oils
Waxes
Vanadium
Nickel

Table 8.7Composition of Bitumen for purposes of assessment

Table 8.8Composition of Emulsifier for purposes of assessment

Emulsifier	Toxicity Assessment Surrogate	Breakdown by %
Alkyl-Monoaromatics	n-alkanes	2.6 %
Branched Alkanes	n-alkanes	12.3%
Diaromatics (except naphthalene)	Low chain length PAHs	0.0099%
Monoaromatics	Low chain length PAHs	3.8%
n-alkanes	n-alkanes	71.2%
Naphthalenes	Low chain length PAHs	5.0%
PAHs (split into Light and Heavy)		
total % weight Light PAHs	Low chain length PAHs	5.2%
total % weight High PAHs	High chain length PAHs	0.0073%

The above calculations are presented in *Annex E Tables E2, E 3* and E4. These show the chemical breakdown and the estimated concentration in soils of each component chemical.

8.2.3 Hazard Quotient and Hazard Index Calculation

Following the calculation of the concentrations of the chemicals in the roadway soils, and the calculation of the Livestock RBSLs as detailed in Section 8.2.1, the relevant hazard quotient for each chemical and the resulting hazard index for the soil were calculated. The hazard index is used to assess the cumulative risk to cattle health from all the chemical components of the products that may be present in the roadway soils.

 $HQ = \frac{Soil Concentration}{Soil Ingestion RBSL}$ and HI = SUM of all HQs

[Equations 8 and 9]

Where,

HQ = Hazard Quotient, which is an indicator of the health hazard obtained by dividing the estimated concentration in the soil of each chemical (as calculated in Section 8.2.2) by the RBSL.

HI = Hazard Index, which is the sum of more than one hazard quotient for multiple chemicals. This accounts for the cumulative exposure to all the chemicals in the products used. This is a unit less value which is c o n s i d e r e d as a fraction of 1, whereupon the soil concentrations will be considered to present a potential risk to the identified receptor if the HI were greater than 1.

Annex E, Tables E2, E3 and E4 show the estimated concentration in soils of each component chemical and their corresponding RBSLs, the resulting hazard quotient and the hazard index.

8.2.4 Results of Risk Calculations

The calculations shown in Tables E2, E3 and E4 in Annex E, detail how the HQ and HIs were derived.

The calculated Hazard Indices for each product in the application solution with respect to cattle ingestion are listed below:

- GRT7000 3.86 x10-3
- GRT8000 9.93 x10⁻³

GRT9000 – 8.9 x 10⁻³All HIs are considerably below 1 and as such are not considered to present a risk to cattle on the farms in the vicinity of the access roadways treated with GRT products.

8.2.5 Uncertainty Analysis

One area that was considered to represent an estimate and may change according to field size or grazing habits of the cattle, was the AUF (Area Use Factor), which was assumed to be 1% to account for cattle grazing in all areas of the fields. Should this not be removed from the calculation to reflect cattle that graze exclusively adjacent to the roadway and only ingest roadway soil, the resulting Hazard Indices would be generated:

- GRT7000 0.386
- GRT8000 0.993
- GRT9000 0.890

Once again, all hazard indices are below 1, indicating that these products as applied do not present a risk to cattle on the farms in the vicinity of the access roadways to be treated with GRT products. ERM do not consider that GRT7000 or 8000/9000 present a risk from soil ingestion to cattle.

8.2.6 Market Assessment

Food Standards Australia New Zealand

Australia and New Zealand Food Standards Code is a set of food safety standards for all aspects of food safety. It is a legislative instrument that is enforced by State and Territory and New Zealand agencies. They publish a set of Maximum Residue Limits for particular potential food contaminants. These limits are established by scientists within the Australian Pesticides and Veterinary Medicines Authority and mainly relate to metals, pesticides and veterinary medicines, as detailed below.

Food Standards Australia New Zealand has not published Maximum Residue Limits for any substance that is relevant to the three GRT products assessed in this report. Relevant common substances could be, for example, asphalt or fuel petroleum hydrocarbons. The reason that no limits are provided is likely to be the low relative toxicity, the fact that these products are not used directly on animals, and that they are not considered likely to result in potentially harmful residues in animal products.

Australian Pesticides and Veterinary Medicines Authority (APVMA)

The Australian Pesticides and Veterinary Medicines Authority (APVMA) establish Withholding Periods and Export Slaughter Intervals (ESIs) for specific products that are used as pesticides and for veterinary medicines. This is a period where cattle must be kept alive prior to slaughter to ensure that agricultural compounds that are considered toxic have been metabolised or excreted before the cattle are slaughtered and prepared for export to other trade zones.

None of the three GRT products assessed here, nor constituent compounds or chemical have been are currently registered with the APVMA and as such have no specific ESI ascribed to them.

The Principal Scientific Advisor at Queensland Government Department of Agriculture, Fisheries and Forestry (DAFF), employed to consider agricultural product integrity to minimise trade impacts from residues from contamination, was contacted on the 20 July 2012 to request information on Queensland specific requirements for the products and their assessment. ERM were advised that the GRT products did not require to be assessed by DAFF for the road stabilisation uses described in this report.

Australian Certified Organic

None of GRT's products have currently been registered as suitable for use on an organic farm with the AQIS Organic Approved Certifying Organisations and are not currently listed in the National Standard for Organic and Biodynamic Produce, Edition 3.4, July 2009. This does not necessarily mean that their use is a risk to organic status, however it does mean that no organic certification organisation will state, prior to an inspection of a farm, that they consider it is suitable for use.

Based on discussions with the Biological Farmers Association, ERM considers it possible that if the products were used on a road within a field, which has current organic certification, that this certification could be jeopardised. This risk could be overcome, if the products themselves were certified as suitable for use on organic farms.

If GRT wants to be able to state on the product information that it is suitable for use on organic farms, it is recommended that GRT pursues formal registration and certification with the Biological Farmers Association in order to be allowed for use on organic farms according to the manufacturers application instructions. This process would require full disclosure of the ingredients present in the GRT products.

This would allow an assessment and if the product is registered, allow a statement to be released providing reassurance that the correct use of GRT products is unlikely to affect organic status.

The process for a product to be certified is outlined in the Australian Certified Organic Standard, 2010 – Version 1.0, Biological Farmers of Australia.

Whether use of GRT products on roadways is a risk to organic status ultimately depends on the views of the organic certification bodies, however ERM considers there is a possible risk. The information contained within this risk assessment report could potentially be used to provide further information to such an organisation, should further information be required.

CONCLUSIONS

9

ERM conducted a risk assessment on road stabilisation and dust suppression agents (GRT7000, and GRT8000/9000, all supplied by GRT). The primary ingredients are a mixture of petroleum hydrocarbon compounds acting as a surfactant, bitumen, water and polymer primers. The assessment considered the potential risk to the aquatic environment resulting from spillages and run-off / leaching from treated roads, and potential risk to livestock (using cattle) health resulting from grazing adjacent to treated roads. The potential for creation of soil contamination via leaching, effects on meat quality, and risk to organic certification were also evaluated.

The assessment included direct ecotoxicity testing of the products and soils treated with typical application solutions of the products. The soil samples were subjected to a leaching procedure and the resulting leachate chemically analysed. GRT provided the products and the treated soil samples, together with product MSDS and application instructions..

9.1 AQUATIC ECOTOXICITY RISK ASSESSMENT

Aquatic ecological receptors could be exposed via a spill or leaching from the soil after product application. Risk was assessed using the results of the ecotoxicity testing on solutions made from the products mixed with water at a variety of dilutions, and on the treated soils mixed with water. Soil samples were mixed with water and stirred for 24 hours prior to commencing the tests.

Toxicity tests were conducted on five test species. The 48-hr *Ceriodaphnia cf dubia* acute toxicity test was the most sensitive test, followed by the 72-hr microalgal growth inhibition test. The NOECs for the remaining three tests were greater than the maximum test concentration of 1000 mg/L. The soil leachate for GRT7000 and GRT8000/GRT9000 had significantly lower toxicity than products themselves.

RBSLs were calculated for GRT7000 and GRT8000/GRT9000 using the Burr Type III statistical distribution (BT III SD) method (ANZECC and ARMCANZ, 2000). The RBSLs were 12.1 mg/L and 110 mg/L for GRT7000 and GRT8000/GRT9000 respectively. The dilution factor required to achieve a "no effect" concentration was then calculated using the Ecological RBSLs.

For runoff after application, the above levels of dilution for all three products are considered very likely to occur. Although dilution factors were not calculated for the soil leachate toxicity results, the leachates were lower toxicity than the products, and therefore the required dilutions would actually be lower. The risk to aquatic receptors from treated roads via leaching and run-off is therefore considered low.

The event of a direct spillage into a water body of the 6:1 application solution of GRT 7000 or GRT8000/GRT9000 may result in potential harm to a water environment assuming the dilution within the receiving water body is less than the defined dilution factors. The dilution factors presented and the Ecological RBSLs above can be used for further site-specific assessment of spill events.

9.2 CATTLE ASSESSMENT

9.2.1 *Cattle Health Risks*

Incidental soil ingestion via eating soil attached to grass growing at the edge of treated road was considered the only significant exposure pathway for cattle to become exposed to the products. ERM assessed the potential toxicity to cattle of the potentially toxic chemicals in each product, which were revealed to ERM under a confidentiality agreement but are not individually identified in this report.

The risk assessment indicated that the GRT7000 and GRT8000/9000 products are not considered to present a significant health risk to cattle, assuming that they are used as described in this report.

9.2.2 Market Assessment

ERM assessed the potential risks with respect to the beef cattle marketplace (eg. Australian market, EU market or organic market) based on the understanding of the chemical nature and intended use of the dust suppression material and through a review of relevant government import/export and organic certification guidelines.

ERM found that the Australian Government have not assessed these products for export of cattle, however this is considered to be due to their low risk to export. It is considered very unlikely that the potential exposure could lead to meat containing detectable concentrations of any of the component chemicals. As such, it is considered that use of these products on cattle farms will not result in market risks.

ERM considers that there is a potential risk to organic certification if the products were used in field with current certification.

ASSESSMENT OF POTENTIAL FOR SOIL AND SEDIMENT CONTAMINATION

9.3

The chemical analysis of the leachates from treated soils resulted in no detectable concentration of potentially toxic organic chemicals that could be present in the application solutions. It is therefore considered unlikely that the use of the products could result in contamination of soil or sediment via leaching from treated roadways. Direct spillage of either the products or the application solutions could have contaminative effect.

10 REFERENCES

ANZECC & ARMCANZ (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand), 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

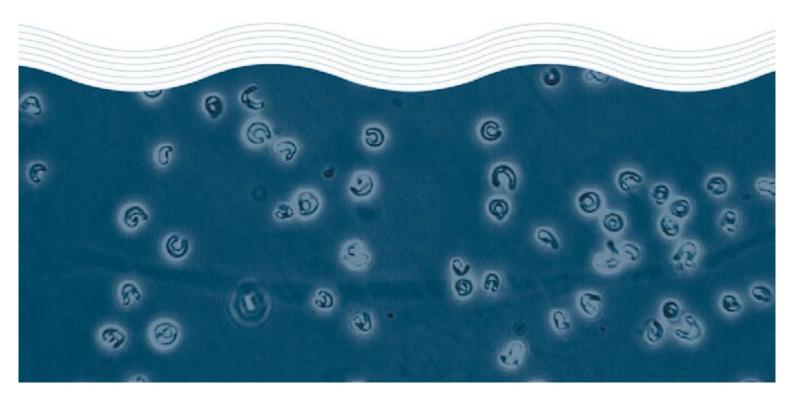
API (2004) API 4733. Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons.

EnHealth 2013. Environmental Health Risk Assessment. Department of Health and Ageing, Government of Australia, Canberra.

Shao, Q. 2000. Estimation for hazardous concentrations based on NOEC data: An alternative approach. Envirometrics, 11: 583-595.

Warne, M., 2001. Derivation of the Australian and New Zealand Water Quality Guidelines for Toxicants. Australasian Journal of Ecotoxicology, 7: 123-136. Annex A

Ecotox Laboratory Reports



Toxicity Assessment of GRT7000 and GRT8000/9000

Global Roads Technology Operations Pty Ltd

Test Report

August 2013

Toxicity Assessment of GRT7000 and GRT8000/9000

Global Roads Technology Operations Pty Ltd

Test Report

August 2013

(Page 1 of 2)

W>www.ecotox.com.au

9420 9484

This document is issued in accordance with NATA's accreditation requirements

Client:	Global Road Technol Level 15 Corporate C	logy Operations Pty Ltd Centre One	ESA Job #: Date Sampled	PR1067 Not supplied	
Attention:	2 Corporate Court Bundall QLD 4218 Troy		Date Received: Sampled By: ESA Quote #:	15 July 2013 Client PL1067_q01	
Client Ref:	lient Ref: Not supplied				
Lab ID No.:Sample Name:6153GRT7000		Sample Description: Chemical sample received at room temperature in apparent good condition.			
Test Perform	ned:		t using the freshwate	er cladoceran <i>Ceriodaphnia</i>	
Test Protoco	bl:	<i>cf dubia</i> ESA SOP 101 (ESA 2011), based on USEPA (2002) and Bailey <i>et al</i> . (2000) The test was performed at 25±1°C. Nil The highest test concentration of 400mg/L was prepared by adding a			
Test					
Temperature Deviations fr Comments o Preparation:	rom Protocol: on Solution	weighed aliquot of sam (DMW). The remaining	ple 6153 'GRT7000' test concentrations concentration with E the prepared sample	into dilute mineral water were achieved by serially MW. A DMW control was	

Sample 6153: GF	RT7000	Vacant	Vacant
Concentration	% non-		
(mg/L)	immobilised		
	(Moon + SD)		
DMW Control	95.0 ± 10.0		
6.3	90.0 ± 11.6		
12.5	35.0 ± 10.0*		
25.0	25.0 ± 10.0*		
50.0	15.0 ± 10.0*		
100.0	20.0 ± 0.0 *		
200.0	5.0 ± 10.0*		
400.0	0.0 ± 0.0		
48-hr EC10 = <6.			
48-hr EC50 = 15.			
NOEC = 6.3mg/L			
LOEC = 12.5mg/	Ĺ		

*Significantly lower percent immobilisation compared with the DMW Control (Steel's Many-One Rank Test, 1-tailed, P=0.05)

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

U

Toxicity Test Report: TR106	7/1		Page 2 of 2)
QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % non-immobilised Reference Toxicant within cusum chart limits	90.0% 150.0-359.1mg KCI/L	95.0% 236.3mg KCI/L	Yes Yes

(Page 2 of 2)

Test Report Authorised by:

Ela Vamo

Dr Rick Krassoi, Director on 4 September 2013

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2011) SOP 101 Acute toxicity test using Ceriodaphnia dubia. Issue No. 9. Ecotox Services Australasia, Sydney, New South Wales.
- USEPA (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

(Page 1 of 2)

W>www.ecotox.com.au

This document is issued in accordance with NATA's accreditation requirements


Client:	Global Road Techno Level 15 Corporate	ology Operations Pty Ltd Centre One	ESA Job #: Date Sampled:	PR1067 Not supplied
Attention:	2 Corporate Court Bundall QLD 4218 Troy		Date Received: Sampled By:	15 July 2013 Client PL1067_q01
Client Ref:	Not supplied			
Lab ID No.: 6154	Sample Name: Sample Description: GRT8000/9000 Chemical sample rec condition.		ived at room temp	erature in apparent good
Test Perform		<i>cf dubia</i> ESA SOP 101 (ESA 2	-	er cladoceran <i>Ceriodaphnia</i> PA (2002) and Bailey <i>et al</i> .
Test		(2000) The test was performed at 25±1°C. Nil		
Temperature: Deviations from Protocol: Comments on Solution Preparation:		The highest test concentration of 400mg/L was prepared by adding a weighed aliquot of sample 6154 'GRT8000/9000' into dilute mineral water (DMW). The remaining test concentrations were achieved by serially diluting the highest test concentration with DMW. A DMW control was tested concurrently with the prepared sample. ESA Laboratory culture 25 July 2013 at 1330h		

Sample 6154: Gl	RT8000.	/9000	Vacant	Vacant
Concentration	%	non-		
(mg/L)		obilised		
	(Me	an ± SD)		
DMW Control	95.0	± 10.0		
6.3	95.0	± 10.0		
12.5	95.0	± 10.0		
25.0	100	± 0.0		
50.0	95.0	± 10.0		
100.0	80.0	± 16.3		
200.0	65.0	± 19.2*		
400.0	10.0	± 20.0*		
48-hr EC10 = 10 139.7)mg/L 48-hr EC50 = 21 284.2)mg/L NOEC = 100.0m LOEC = 200.0m	7.1 (162 g/L			

*Significantly lower percent immobilisation compared with the DMW Control (Dunnett's Test, 1-tailed, P=0.05)

2066

new

9420

9481

9420 9484

(Page 2 of 2)

Test Report Authorised by:

Ela Vamo

Dr Rick Krassoi, Director on 4 September 2013

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2011) SOP 101 Acute toxicity test using Ceriodaphnia dubia. Issue No. 9. Ecotox Services Australasia, Sydney, New South Wales.
- USEPA (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

(Page 1 of 2)

This document is issued in accordance with NATA's accreditation requirements

Client:	Global Road Techno Level 15 Corporate 0	logy Operations Pty Ltd Centre One	ESA Job #: Date Sampled:	PR1067 Not supplied
Attention:	2 Corporate Court Bundall QLD 4218 Troy		Date Received: Sampled By: ESA Quote #:	6 August 2013 Client PL1067_q01
Client Ref:	Not supplied			
Lab ID No.: 6198			cription: Imple received at room temperature in apparent go	
Test Perform	ned:	48-hr acute toxicity tes	t using the freshwate	er cladoceran Ceriodaphnia
Test Protoco Test	bl:	ESA SOP 101 (ESA 2011), based on USEPA (2002) and Bailey <i>et al.</i> (2000) The test was performed at 25±1°C.		
Temperature: Deviations from Protocol: Comments on Solution Preparation:		added to dilute minera magnetic stirrer. Follow hour, after which time siphoned off. The WAF remaining test concent	I water (DMW) and ving mixing, the solut the water-accommod Fs were serially dilute trations. A DMW cont th the prepared samp corresponding loading	abilised with GRT7000' was mixed for 24 hours using a ions were left to settle for 1 ated fractions (WAFs) were id with DMW to prepare the rol and a WAF control were ole. The test concentrations rates.

Sample 6198: So GRT7000	oil stabilized with	Vacant	Vacant
Concentration (g/L)	% non- immobilised		
DMW Control	95.0 ± 10.0		
WAF Control	100 ± 0.0		
6.3	100 ± 0.0		
12.5	100 ± 0.0		
25.0	80.0 ± 16.3		
50.0	65.0 ± 34.2		
100.0	55.0 ± 25.2*		
48-hr EC10 = 21 48-hr EC50 = 93 100.0)g/L NOEC = 50.0g/L	.4 (62.3-		

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 1 of 2)

*Significantly lower percent immobilisation compared with the DMW Control (Steel's Many-One Rank Test, 1-tailed, P=0.05)

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % non-immobilised	90.0%	95.0%	Yes
Reference Toxicant within cusum chart limits	150.8-359.8mg KCI/L	212.1mg KCI/L	Yes

Test Report Authorised by:

E fa Vieno

Dr Rick Krassoi, Director on 4 September 2013

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2011) SOP 101 Acute toxicity test using Ceriodaphnia dubia. Issue No. 9. Ecotox Services Australasia, Sydney, New South Wales.
- USEPA (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

(Page 1 of 2)

W>www.ecotox.com.au

9420 9484

This document is issued in accordance with NATA's accreditation requirements

Client:	Global Road Techno Level 15 Corporate C	logy Operations Pty Ltd Centre One	ESA Job #: Date Sampled:	PR1067 Not supplied
Attention:	2 Corporate Court Bundall QLD 4218 Troy		Date Received: Sampled By: ESA Quote #:	6 August 2013 Client PL1067_q01
Client Ref:	Not supplied			
Lab ID No.: 6199	Sample Name: Soil stabilised with GRT8000/9000	Sample Description: Solid soil sample rec condition.	eived at room temp	perature in apparent good
Test Perforn		cf dubia	•	er cladoceran <i>Ceriodaphnia</i>
Test		ESA SOP 101 (ESA 2011), based on USEPA (2002) and Bailey <i>et al.</i> (2000) The test was performed at 25±1°C. Nil		
Temperature: Deviations from Protocol: Comments on Solution Preparation:		One hundred grams of added to dilute minera magnetic stirrer. Follow hour, after which time siphoned off. The WAF remaining test concent	Il water (DMW) and it ving mixing, the solut the water-accommod s were serially dilute rations. A DMW cont h the prepared samp orresponding loading	abilised with GRT7000' was mixed for 24 hours using a ions were left to settle for 1 ated fractions (WAFs) were ed with DMW to prepare the rol and a WAF control were ole. The test concentrations rates.

Sample 6199: <i>So</i> GRT8000/9000	oil stabilized with	Vacant	Vacant
Concentration (g/L)	% non- immobilised		
DMW Control	95.0 ± 10.0		
WAF Control	100 ± 0.0		
6.3	100 ± 0.0		
12.5	30.0 ± 20.0*		
25.0	10.0 ± 11.6*		
50.0	5.0 ± 10.0*		
100.0	20.0 ± 16.3*		
8-hr IC10 = 10. 8-hr EC50 = 10 IOEC = 6.3g/L .OEC = 12.5g/L	.9 (9.0-13.3)g/L		

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

Toxicity Test Report: TR1067/4 (Page 1 of 2) *Significantly lower percent immobilisation compared with the DMW Control (Steel's Many-One Rank Test, 1-tailed, P=0.05)

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % non-immobilised	90.0%	95.0%	Yes
Reference Toxicant within cusum chart limits	150.8-359.8mg KCI/L	212.1mg KCl/L	Yes

Test Report Authorised by:

F/2 Vamo

Dr Rick Krassoi, Director on 4 September 2013

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

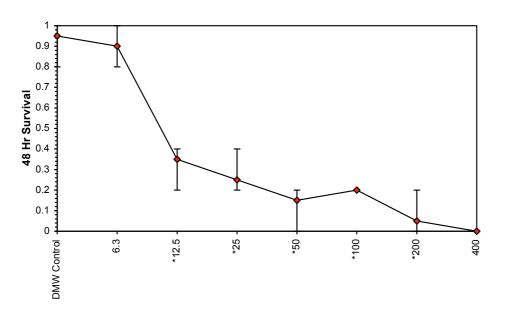
Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2011) SOP 101 Acute toxicity test using Ceriodaphnia dubia. Issue No. 9. Ecotox Services Australasia, Sydney, New South Wales.
- USEPA (2002) *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms.* 4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

Statistical Printouts for the Acute Test with *Ceriodaphnia dubia*

				Ceriodaphnia Acu	te Toxicity Test-48 Hr Surviv	/al	
Start Date:	25/07/2013	13:30	Test ID:	PR1067/02	Sample ID:	GRT7000	-
End Date:	27/07/2013	16:30	Lab ID:	6153	Sample Type:	CP-Chemical product	
Sample Date:			Protocol:	ESA 101	Test Species:	CD-Ceriodaphnia dubia	
Comments:							
Conc-mg/L	1	2	3	4			-
DMW Control	1.0000	0.8000	1.0000	1.0000			_
6.3	1.0000	1.0000	0.8000	0.8000			
12.5	0.4000	0.4000	0.2000	0.4000			
25	0.4000	0.2000	0.2000	0.2000			
50	0.2000	0.2000	0.2000	0.0000			
100	0.2000	0.2000	0.2000	0.2000			
200	0.0000	0.2000	0.0000	0.0000			
400	0.0000	0.0000	0.0000	0.0000			

			Ti	ransform:	Arcsin Sq	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
DMW Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4			1	20
6.3	0.9000	0.9474	1.2262	1.1071	1.3453	11.212	4	16.00	10.00	2	20
*12.5	0.3500	0.3684	0.6295	0.4636	0.6847	17.561	4	10.00	10.00	13	20
*25	0.2500	0.2632	0.5189	0.4636	0.6847	21.301	4	10.00	10.00	15	20
*50	0.1500	0.1579	0.4041	0.2255	0.4636	29.464	4	10.00	10.00	17	20
*100	0.2000	0.2105	0.4636	0.4636	0.4636	0.000	4	10.00	10.00	16	20
*200	0.0500	0.0526	0.2850	0.2255	0.4636	41.771	4	10.00	10.00	19	20
400	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4			20	20
Auxiliary Tests							Statistic		Critical	Skew	Kurt
Shapiro-Wilk's Te	est indicate	es normal d	istribution (p > 0.05)			0.943974		0.924	-0.21673	-0.55042


Shapiro-Wilk's Test indicates normal distribution (p > 0.05) Equality of variance cannot be confirmed

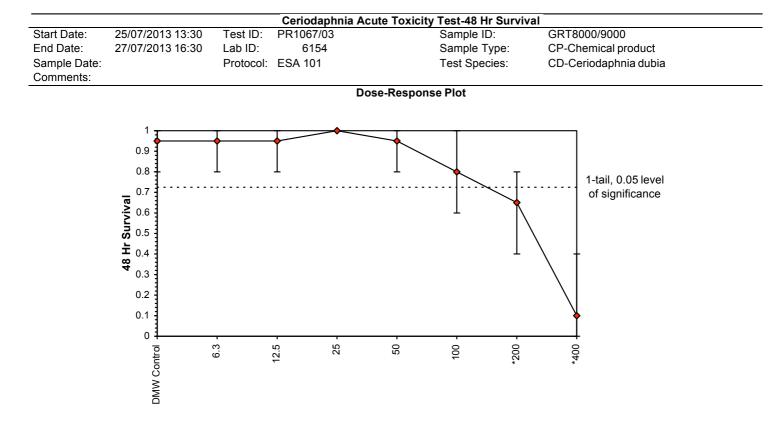
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Steel's Many-One Rank Test	6.3	12.5	8.87412		
Treatments vs DMW Control					

					Maximum Likeliho	od-Probit					
Parameter	Value	SE	95% Fiducial Li	nits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	1.598792	0.286495	1.037261 2.160	322	0.05	10.78142	11.0705	0.06	1.183813	0.625472	5
Intercept	3.107329	0.439457	2.245993 3.968	65							
TSCR	0.042065	0.0448	-0.04574 0.129	373		1.0 T			>	~	
Point	Probits	mg/L	95% Fiducial Lin	nits		0.9			A		
EC01	2.674	0.535485	0.056912 1.62	042		0.5					
EC05	3.355	1.428903	0.253709 3.411	666		0.8 -			/] 🔶		
EC10	3.718	2.411228	0.55994 5.10	014		0.7			•/ /		
EC15	3.964	3.432044	0.951909 6.712	319		· ·			1/		
EC20	4.158	4.543625	1.447 8.375	741		9 .0 -		71	//		
EC25	4.326	5.780143	2.066528 10.15	646		Su 0.5 0.4		//	/		
EC40	4.747	10.60112	4.975828 16.82	971		ds					
EC50	5.000	15.26909	8.250944 23.33	229		^{0.4}]		/ //			
EC60	5.253	21.99251	13.27745 33.33	232		0.3					
EC75	5.674	40.33554	26.59053 66.40	661		<u> </u>					
EC80	5.842	51.3126	33.83948 90.3	663		0.2					
EC85	6.036	67.93188	43.96989 131.9	065		0.1 -	/				
EC90	6.282	96.69146	59.87371 216.7	513		0.0					
EC95	6.645	163.1637	92.20217 464.3	351			1	1	100	10000	
EC99	7.326	435.3911	199.2022 2017	.43		0.0	I			10000	
				_				Dose m	ig/∟		

			Ceriodaphnia Acute Toxici	ty Test-48 Hr Survival	
Start Date:	25/07/2013 13:30	Test ID:	PR1067/02	Sample ID:	GRT7000
End Date:	27/07/2013 16:30	Lab ID:	6153	Sample Type:	CP-Chemical product
Sample Date:		Protocol:	ESA 101	Test Species:	CD-Ceriodaphnia dubia
Comments:					

Dose-Response Plot

			Ceriodaphi	nia Acute			Survival	
Start Date:	25/07/2013 13:30	Test ID:	PR1067/02			Sample ID:		GRT7000
End Date:	27/07/2013 16:30	Lab ID:	6153			Sample Typ		CP-Chemical product
Sample Date:		Protocol:	ESA 101		Т	est Specie	es:	CD-Ceriodaphnia dubia
Comments:								
• "				Auxiliary Data Summary				
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N
DMW Control			95.00	80.00	100.00	10.00	3.33	
6.3			90.00	80.00	100.00	11.55	3.78	
12.5			35.00	20.00	40.00	10.00	9.04	
25 50			25.00	20.00	40.00	10.00	12.65	
			15.00	0.00	20.00	10.00	21.08	
100			20.00	20.00	20.00	0.00	0.00	
200			5.00	0.00	20.00	10.00	63.25	
400		-	0.00	0.00	0.00	0.00	0.00	_ 4
DMW Control			8.30	8.30	8.30	0.00	0.00	
6.3			8.30	8.30	8.30	0.00	0.00	
12.5			8.20	8.20	8.20	0.00	0.00	
25			8.20	8.20	8.20	0.00	0.00	
50			8.20	8.20	8.20	0.00	0.00	
100			8.20	8.20	8.20	0.00	0.00	
200			8.20	8.20	8.20	0.00	0.00	
400		-	8.20	8.20	8.20	0.00	0.00	
DMW Control			104.10	104.10	104.10	0.00	0.00	
6.3			103.80	103.80	103.80	0.00	0.00	
12.5			103.50	103.50	103.50	0.00	0.00	
25 50			103.80	103.80	103.80	0.00	0.00	
			103.40	103.40	103.40	0.00	0.00	
100			102.70	102.70	102.70	0.00	0.00	
200			103.20	103.20	103.20	0.00	0.00	
400		-	103.40	103.40	103.40	0.00	0.00	
DMW Control			166.30	166.30	166.30	0.00	0.00	
6.3			166.20	166.20	166.20	0.00	0.00	
12.5			166.20	166.20	166.20	0.00	0.00	
25 50			166.40	166.40	166.40	0.00	0.00	
			166.80	166.80	166.80	0.00	0.00	
100			167.00 167.70	167.00	167.00	0.00	0.00	
200			167.70	167.70	167.70	0.00	0.00	
400)	_	168.90	168.90	168.90	0.00	0.00	1


				Ceriodaph	nia Acute Toxicity Test-48 Hr Survival
Start Date:	25/07/2013	13:30	Test ID:	PR1067/03	Sample ID: GRT8000/9000
End Date:	27/07/2013	16:30	Lab ID:	6154	Sample Type: CP-Chemical product
Sample Date:			Protocol:	ESA 101	Test Species: CD-Ceriodaphnia dubia
Comments:					
Conc-mg/L	1	2	3	4	
DMW Control	1.0000	0.8000	1.0000	1.0000	
6.3	0.8000	1.0000	1.0000	1.0000	
12.5	1.0000	0.8000	1.0000	1.0000	
25	1.0000	1.0000	1.0000	1.0000	
50	1.0000	0.8000	1.0000	1.0000	
100	0.8000	0.8000	0.6000	1.0000	
200	0.8000	0.6000	0.4000	0.8000	
400	0.4000	0.0000	0.0000	0.0000	

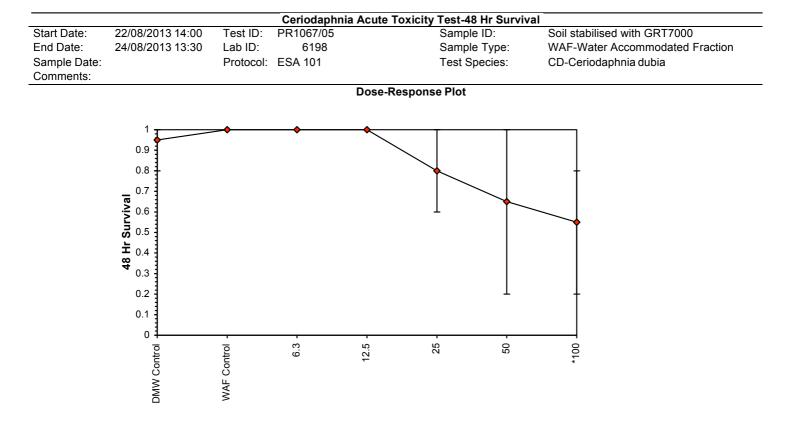
			Ti	ransform:	Arcsin Sq	uare Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
DMW Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4				1	20
6.3	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	0.000	2.480	0.2673	1	20
12.5	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	0.000	2.480	0.2673	1	20
25	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	-0.552	2.480	0.2673	0	20
50	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	0.000	2.480	0.2673	1	20
100	0.8000	0.8421	1.1114	0.8861	1.3453	16.874	4	1.618	2.480	0.2673	4	20
*200	0.6500	0.6842	0.9463	0.6847	1.1071	21.467	4	3.150	2.480	0.2673	7	20
*400	0.1000	0.1053	0.3403	0.2255	0.6847	67.468	4	8.772	2.480	0.2673	18	20

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.930261	0.93	0.108713 0.367174
Equality of variance cannot be confirmed			

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	200	141.4214		0.196213	0.213061	0.456073	0.023232	1.7E-08	7, 24
Treatments vs DMW Control										

					Maximum Like	elihoo	od-Probit					
Parameter	Value	SE	95% Fiduc	ial Limits	Con	trol	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	3.804375	0.936228	1.969368	5.639383	0.0)5	3.14241	11.0705	0.68	2.33665	0.262855	4
Intercept	-3.88949	2.199414	-8.20034	0.42136								
TSCR	0.040657	0.020598	0.000284	0.081029			1.0 T					
Point	Probits	mg/L	95% Fiduc	ial Limits			0.9					
EC01	2.674	53.10762	13.28345	88.54745			0.9			9 /		
EC05	3.355	80.22157	29.0127	118.7932			0.8 -					
EC10	3.718	99.95097	43.75694	139.7112			0.7					
EC15	3.964	115.9358	57.49923	156.5118						11/		
EC20	4.158	130.4443	71.16877	171.9435			9 , 0.6					
EC25	4.326	144.3299	85.12237	187.1258			600.5 8000.5 9.4			11		
EC40	4.747	186.2327	129.9789	238.1386			ds -		/			
EC50	5.000	217.0949	162.4361	284.1769			č ^{0.4}					
EC60	5.253	253.0715	196.5812	350.1852			0.3 -		/	•		
EC75	5.674	326.5447	253.981	526.7007			0.2					
EC80	5.842	361.3051	277.3273	627.8769			0.2		/ 🚽			
EC85	6.036	406.5196	305.4929	775.0545			0.1 -		- / //			
EC90	6.282	471.5329	342.9924	1016.201			0.0					
EC95	6.645	587.5	404.18	1529.636			0.0 -	10	100	1000	10000	
EC99	7.326	887.4469	543.1836	3335.103			i	10			10000	
									Dose m	g/∟		

			Ceriodaphi	nia Acute			Survival	
Start Date:	25/07/2013 13:30	Test ID:	PR1067/03			Sample ID:		GRT8000/9000
End Date:	27/07/2013 16:30	Lab ID:	6154			Sample Typ		CP-Chemical product
Sample Date:		Protocol:	ESA 101		Т	est Specie	es:	CD-Ceriodaphnia dubia
Comments:								
	_				xiliary Data			-
Conc-mg/L	Parameter		Mean	Min	Мах	SD	CV%	Ν
DMW Control			95.00	80.00	100.00	10.00	3.33	
6.3			95.00	80.00	100.00	10.00	3.33	
12.5			95.00	80.00	100.00	10.00	3.33	
25			100.00	100.00	100.00	0.00	0.00	
50			95.00	80.00	100.00	10.00	3.33	
100			80.00	60.00	100.00	16.33	5.05	
200			65.00	40.00	80.00	19.15	6.73	
400		-	10.00	0.00	40.00	20.00	44.72	_
DMW Control			8.30	8.30	8.30	0.00	0.00	
6.3			8.20	8.20	8.20	0.00	0.00	
12.5			8.20	8.20	8.20	0.00	0.00	
25			8.20	8.20	8.20	0.00	0.00	
50			8.20	8.20	8.20	0.00	0.00	
100			8.20	8.20	8.20	0.00	0.00	
200			8.20	8.20	8.20	0.00	0.00	1
400	1		8.20	8.20	8.20	0.00	0.00	1
DMW Control	DO %	_	104.10	104.10	104.10	0.00	0.00	1
6.3			103.90	103.90	103.90	0.00	0.00	1
12.5			103.50	103.50	103.50	0.00	0.00	1
25	i i i i i i i i i i i i i i i i i i i		103.60	103.60	103.60	0.00	0.00	1
50	1		103.90	103.90	103.90	0.00	0.00	1
100	1		103.50	103.50	103.50	0.00	0.00	1
200			103.60	103.60	103.60	0.00	0.00	
400	1		103.30	103.30	103.30	0.00	0.00	1
DMW Control	Cond uS/cm	_	166.30	166.30	166.30	0.00	0.00	- 1
6.3			166.30	166.30	166.30	0.00	0.00	
12.5			166.20	166.20	166.20	0.00	0.00	
25			166.30	166.30	166.30	0.00	0.00	
50			166.40	166.40	166.40	0.00	0.00	
100			166.70	166.70	166.70	0.00	0.00	
200			167.10	167.10	167.10	0.00	0.00	
400			167.80	167.80	167.80	0.00	0.00	

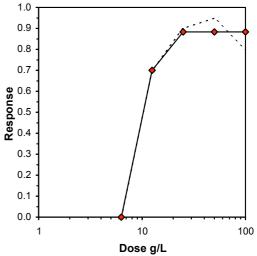

				Ceriodaphni	a Acute Toxicity Test-48 Hr Survival	
Start Date:	22/08/2013	14:00	Test ID:	PR1067/05	Sample ID:	Soil stabilised with GRT7000
End Date:	24/08/2013	13:30	Lab ID:	6198	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 101	Test Species:	CD-Ceriodaphnia dubia
Comments:						
Conc-g/L	1	2	3	4		
DMW Control	0.8000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
6.3	1.0000	1.0000	1.0000	1.0000		
12.5	5 1.0000	1.0000	1.0000	1.0000		
25	0.8000	0.6000	1.0000	0.8000		
50	0.2000	0.6000	0.8000	1.0000		
100	0.6000	0.8000	0.6000	0.2000		

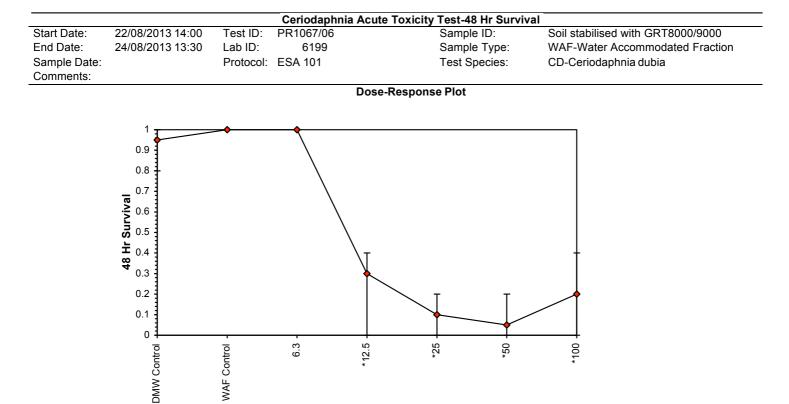
				ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Number	Total
Conc-g/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
DMW Control	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		0	20
6.3	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
12.5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
25	0.8000	0.8000	1.1114	0.8861	1.3453	16.874	4	12.00	10.00	4	20
50	0.6500	0.6500	0.9505	0.4636	1.3453	39.437	4	12.00	10.00	7	20
*100	0.5500	0.5500	0.8357	0.4636	1.1071	32.195	4	10.00	10.00	9	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-r	normal distribu	ition (p <=	0.05)		0.813898	0.916	-0.65398	2.565492
Equality of variance cannot be con	firmed							
The control means are not signification	antly different	(p = 0.36)			1	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	50	100	70.71068					

Treatments vs WAF Control

	Maximum Likelihood	d-Probit					
95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
24 1.053244 2.951796	0 2	2.772409	7.814728	0.43	1.970364	0.499371	6
51 -0.5379 2.646515							
		1.0 T					
95% Fiducial Limits		0.9					
56 1.059958 12.838		0.9					
98 4.499502 22.83176		0.8 -					
05 9.45867 31.90718		0.7					
08 15.1909 41.10572							
81 21.4939 51.77644		9.6 0.5 0.4					
42 28.08547 65.05321		5 0.5					
08 48.11054 132.4453		ds -					
66 62.29697 216.8591		č ^{0.4}]					
08 78.76527 363.6452		0.3	/	7/			
44 113.3646 881.1738		<u> </u>		/			
57 130.3548 1258.099		0.2	<u>/</u>				
91 153.0773 1909.382		0.1 -		/			
93 186.9448 3234.873		0.0					
28 250.5966 7089.411		0.0 +	10	100 1	000 1000	100000	
21 431.5675 31078.12		1	10			5 100000	
				1 10	1 10 100 1	1 10 100 1000 1000	1 10 100 10000 100000

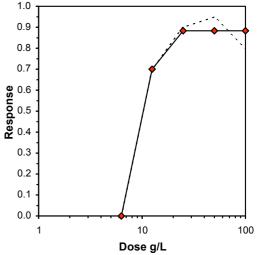

-			Ceriodaph	nia Acute			Survival	
Start Date:	22/08/2013 14:00	Test ID:	PR1067/05			Sample ID:		Soil stabilised with GRT7000
End Date:	24/08/2013 13:30	Lab ID:	6198			Sample Typ		WAF-Water Accommodated Fraction
Sample Date:		Protocol:	ESA 101		٦	Test Specie	S:	CD-Ceriodaphnia dubia
Comments:								
						a Summary		-
Conc-g/L	Parameter		Mean	Min	Max	SD	CV%	N
DMW Control			95.00	80.00	100.00	10.00	3.33	
WAF Control			100.00	100.00	100.00	0.00	0.00	
6.3			100.00	100.00	100.00	0.00	0.00	
12.5			100.00	100.00	100.00	0.00	0.00	
25			80.00	60.00	100.00	16.33	5.05	
50			65.00	20.00	100.00	34.16	8.99	
100		_	55.00	20.00	80.00	25.17	9.12	
DMW Control			8.00	8.00	8.00	0.00	0.00	
WAF Control			8.10	8.10	8.10	0.00	0.00	
6.3	•		8.10	8.10	8.10	0.00	0.00	1
12.5	i		8.10	8.10	8.10	0.00	0.00	
25	i		8.10	8.10	8.10	0.00	0.00	1
50			8.10	8.10	8.10	0.00	0.00	1
100	1		8.00	8.00	8.00	0.00	0.00	1
DMW Control	DO %	_	97.00	97.00	97.00	0.00	0.00	1
WAF Control			96.30	96.30	96.30	0.00	0.00	1
6.3	•		98.00	98.00	98.00	0.00	0.00	1
12.5	i		97.90	97.90	97.90	0.00	0.00	1
25	i		97.80	97.80	97.80	0.00	0.00	1
50)		96.90	96.90	96.90	0.00	0.00	1
100)		96.00	96.00	96.00	0.00	0.00	1
DMW Control	Cond uS/cm	-	170.70	170.70	170.70	0.00	0.00	1
WAF Control			170.30	170.30	170.30	0.00	0.00	
6.3			170.80	170.80	170.80	0.00	0.00	
12.5			171.70	171.70	171.70	0.00	0.00	
25			174.40	174.40	174.40	0.00	0.00	
50			179.30	179.30	179.30	0.00	0.00	
100			169.50	169.50	169.50	0.00	0.00	

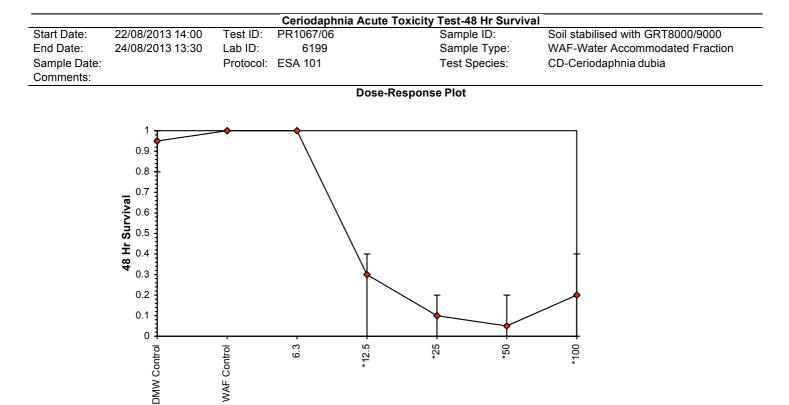

				Ceriodaphn	ia Acute Toxicity Test-48 Hr Survival	
Start Date:	22/08/2013	14:00	Test ID:	PR1067/06	Sample ID:	Soil stabilised with GRT8000/9000
End Date:	24/08/2013	13:30	Lab ID:	6199	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 101	Test Species:	CD-Ceriodaphnia dubia
Comments:						
Conc-g/L	1	2	3	4		
DMW Control	0.8000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
6.3	1.0000	1.0000	1.0000	1.0000		
12.5	0.4000	0.4000	0.0000	0.4000		
25	0.2000	0.0000	0.2000	0.0000		
50	0.0000	0.2000	0.0000	0.0000		
100	0.0000	0.2000	0.2000	0.4000		

			Ti	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Number	Total
Conc-g/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
DMW Control	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		0	20
6.3	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
*12.5	0.3000	0.3000	0.5699	0.2255	0.6847	40.287	4	10.00	10.00	14	20
*25	0.1000	0.1000	0.3446	0.2255	0.4636	39.900	4	10.00	10.00	18	20
*50	0.0500	0.0500	0.2850	0.2255	0.4636	41.771	4	10.00	10.00	19	20
*100	0.2000	0.2000	0.4594	0.2255	0.6847	40.823	4	10.00	10.00	16	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-r	normal distrib	ution (p <=	0.05)		0.914189	0.916	-0.78011	1.559183
Equality of variance cannot be con	firmed							
The control means are not signification	antly different	(p = 0.36)			1	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	6.3	12.5	8.87412					
Treatments vs WAF Control								
			Trimmed	Spearm	an-Karber			

CL	95%	EC50	Trim Level	_
			0.0%	_
			5.0%	
			10.0%	
13.134	8.427	10.520	20.0%	
13.318	8.968	10.929	Auto-11.7%	
	13.134	••••	10.520 8.427 13.134	0.0% 5.0% 10.0% 20.0% 10.520 8.427 13.134


			Ceriodaphi	nia Acute			Survival	
Start Date:	22/08/2013 14:00	Test ID:	PR1067/06			Sample ID:		Soil stabilised with GRT8000/9000
End Date:	24/08/2013 13:30	Lab ID:	6199			Sample Typ		WAF-Water Accommodated Fraction
Sample Date:		Protocol:	ESA 101		1	est Specie	S:	CD-Ceriodaphnia dubia
Comments:								
						a Summar		-
Conc-g/L	Parameter		Mean	Min	Max	SD	CV%	Ν
DMW Control			95.00	80.00	100.00	10.00	3.33	
WAF Control			100.00	100.00	100.00	0.00	0.00	
6.3			100.00	100.00	100.00	0.00	0.00	
12.5			30.00	0.00	40.00	20.00	14.91	
25			10.00	0.00	20.00	11.55	33.98	
50			5.00	0.00	20.00	10.00	63.25	
100		-	20.00	0.00	40.00	16.33	20.21	4
DMW Control			8.00	8.00	8.00	0.00	0.00	
WAF Control			8.10	8.10	8.10	0.00	0.00	
6.3			8.10	8.10	8.10	0.00	0.00	
12.5			8.10	8.10	8.10	0.00	0.00	
25	i		8.10	8.10	8.10	0.00	0.00	1
50			8.10	8.10	8.10	0.00	0.00	1
100			8.10	8.10	8.10	0.00	0.00	1
DMW Control	DO %	-	97.00	97.00	97.00	0.00	0.00	1
WAF Control			96.30	96.30	96.30	0.00	0.00	1
6.3			97.30	97.30	97.30	0.00	0.00	1
12.5	j		97.10	97.10	97.10	0.00	0.00	1
25	;		96.60	96.60	96.60	0.00	0.00	1
50)		96.00	96.00	96.00	0.00	0.00	1
100)		95.50	95.50	95.50	0.00	0.00	1
DMW Control	Cond uS/cm	-	170.70	170.70	170.70	0.00	0.00	- 1
WAF Control			170.30	170.30	170.30	0.00	0.00	
6.3	ł		170.60	170.60	170.60	0.00	0.00	1
12.5			172.40	172.40	172.40	0.00	0.00	
25			176.20	176.20	176.20	0.00	0.00	
50			184.00	184.00	184.00	0.00	0.00	
100			186.00	186.00	186.00	0.00	0.00	

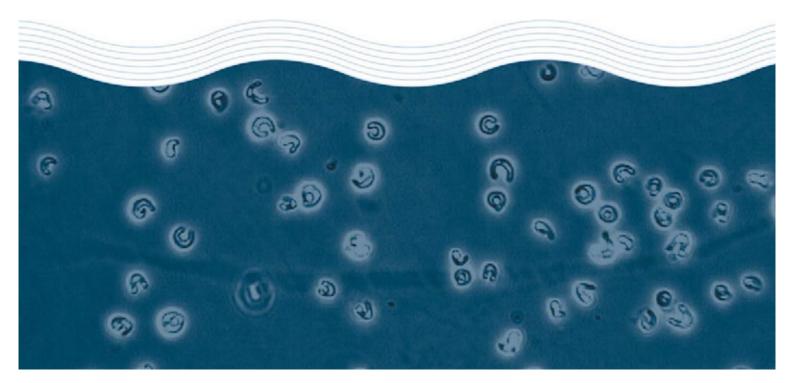

				Ceriodaphn	a Acute Toxicity Test-48 Hr Survival	
Start Date:	22/08/2013	14:00	Test ID:	PR1067/06	Sample ID:	Soil stabilised with GRT8000/9000
End Date:	24/08/2013	13:30	Lab ID:	6199	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 101	Test Species:	CD-Ceriodaphnia dubia
Comments:						
Conc-g/L	1	2	3	4		
DMW Control	0.8000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
6.3	1.0000	1.0000	1.0000	1.0000		
12.5	0.4000	0.4000	0.0000	0.4000		
25	0.2000	0.0000	0.2000	0.0000		
50	0.0000	0.2000	0.0000	0.0000		
100	0.0000	0.2000	0.2000	0.4000		

				ransform:	Arcsin Sc	uare Root	Rank	1-Tailed	Isot	tonic	
Conc-g/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		1.0000	1.0000
6.3	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
*12.5	0.3000	0.3000	0.5699	0.2255	0.6847	40.287	4	10.00	10.00	0.3000	0.3000
*25	0.1000	0.1000	0.3446	0.2255	0.4636	39.900	4	10.00	10.00	0.1167	0.1167
*50	0.0500	0.0500	0.2850	0.2255	0.4636	41.771	4	10.00	10.00	0.1167	0.1167
*100	0.2000	0.2000	0.4594	0.2255	0.6847	40.823	4	10.00	10.00	0.1167	0.1167

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribu	ition (p <=	0.05)		0.914189	0.916	-0.78011	1.559183
Equality of variance cannot be cont	firmed							
The control means are not significa	ntly different	(p = 0.36)			1	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	6.3	12.5	8.87412					
Treatments vs WAF Control								

	Log-Logit Interpolation (200 Resamples)					
g/L	SD	95% CL(Exp)		Skew		
9.707	0.181	8.948	10.011	-0.8198		
10.207	0.211	9.320	10.564	-0.8149		
10.529	0.232	9.558	10.920	-0.8119	1.0	
10.777	0.247	9.740	11.196	-0.8097	0.0	
10.986	0.261	9.893	11.428	-0.8078	0.9	· / ·
11.505	0.295	10.270	12.006	-0.8034	0.8	1
11.819	0.317	10.497	12.356	-0.8007	0.7	
	9.707 10.207 10.529 10.777 10.986 11.505	9.707 0.181 10.207 0.211 10.529 0.232 10.777 0.247 10.986 0.261 11.505 0.295	9.707 0.181 8.948 10.207 0.211 9.320 10.529 0.232 9.558 10.777 0.247 9.740 10.986 0.261 9.893 11.505 0.295 10.270	g/LSD95% CL(Exp)9.7070.1818.94810.01110.2070.2119.32010.56410.5290.2329.55810.92010.7770.2479.74011.19610.9860.2619.89311.42811.5050.29510.27012.006	g/L SD 95% CL(Exp) Skew 9.707 0.181 8.948 10.011 -0.8198 10.207 0.211 9.320 10.564 -0.8149 10.529 0.232 9.558 10.920 -0.8119 10.777 0.247 9.740 11.196 -0.8097 10.986 0.261 9.893 11.428 -0.8078 11.505 0.295 10.270 12.006 -0.8034	g/L SD 95% CL(Exp) Skew 9.707 0.181 8.948 10.011 -0.8198 10.207 0.211 9.320 10.564 -0.8149 10.529 0.232 9.558 10.920 -0.8119 1.0 10.777 0.247 9.740 11.196 -0.8097 0.9 10.986 0.261 9.893 11.428 -0.8078 0.9 11.505 0.295 10.270 12.006 -0.8034 0.8

			Ceriodaphi	nia Acute			Survival	
Start Date:	22/08/2013 14:00	Test ID:	PR1067/06			Sample ID:		Soil stabilised with GRT8000/9000
End Date:	24/08/2013 13:30	Lab ID:	6199			Sample Typ		WAF-Water Accommodated Fraction
Sample Date:		Protocol:	ESA 101		1	Fest Specie	s:	CD-Ceriodaphnia dubia
Comments:								
						a Summary		-
Conc-g/L	Parameter		Mean	Min	Max	SD	CV%	Ν
DMW Control			95.00	80.00	100.00	10.00	3.33	
WAF Control			100.00	100.00	100.00	0.00	0.00	
6.3			100.00	100.00	100.00	0.00	0.00	
12.5			30.00	0.00	40.00	20.00	14.91	
25			10.00	0.00	20.00	11.55	33.98	
50			5.00	0.00	20.00	10.00	63.25	
100		_	20.00	0.00	40.00	16.33	20.21	4
DMW Control			8.00	8.00	8.00	0.00	0.00	
WAF Control			8.10	8.10	8.10	0.00	0.00	
6.3	}		8.10	8.10	8.10	0.00	0.00	1
12.5	5		8.10	8.10	8.10	0.00	0.00	
25	5		8.10	8.10	8.10	0.00	0.00	1
50)		8.10	8.10	8.10	0.00	0.00	1
100)		8.10	8.10	8.10	0.00	0.00	1
DMW Control	DO %	-	97.00	97.00	97.00	0.00	0.00	- 1
WAF Control			96.30	96.30	96.30	0.00	0.00	1
6.3	}		97.30	97.30	97.30	0.00	0.00	1
12.5	5		97.10	97.10	97.10	0.00	0.00	1
25	5		96.60	96.60	96.60	0.00	0.00	1
50			96.00	96.00	96.00	0.00	0.00	
100)		95.50	95.50	95.50	0.00	0.00	1
DMW Control	Cond uS/cm	-	170.70	170.70	170.70	0.00	0.00	<u> </u>
WAF Control			170.30	170.30	170.30	0.00	0.00	
6.3			170.60	170.60	170.60	0.00	0.00	
12.5			172.40	172.40	172.40	0.00	0.00	
25			176.20	176.20	176.20	0.00	0.00	
50			184.00	184.00	184.00	0.00	0.00	
100			186.00	186.00	186.00	0.00	0.00	



Toxicity Assessment of GRT7000 and GRT8000/9000

ERM

Test Report

April 2014

Toxicity Assessment of GRT7000 and GRT8000/9000

6

ERM

Test Report

April 2014

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

2 9420 9484 W≥www.ecotox.com.au

(Page 1 of 2)

This document is issued in accordance with NATA's accreditation requirements

Client:	ERM		ESA Job#:	PR1097					
	Building C, 33 Saund		Date Sampled:	07 March 2014					
	Pyrmont		Date Received:	10 March 2014					
	NSW 2009		Sampled By:	Client					
Attention:	OliviaPatterson		ESA Quote#:	PL1097_q01					
Lab ID No.:	Sample Name:	Sample Descrip							
6520	GRT7000		ed at room temperature in a						
6521	GRT8000/9000	Chemical receive	ed at room temperature in a	pparent good condition					
Test Performe	ed:	96-hr fish imbalance toxicity test using the eastern rainbowfish Melanotaenia splendida splendida							
Test Protocol	:	ESA SOP 117 (E	SA 2013), based on USEP	A (2002)					
Test Tempera	iture:	The test was performed at 25±1°C.							
Deviations fro	om Protocol:	Nil							
Comments or	n Solution	The highest test concentrations were prepared by adding either sample							
Preparation:		6520 "GRT7000" or sample 6521 "GRT8000/9000" into dilute mineral							
		· · · ·	e remaining test concentra	5					
		, ,	he highest test concentratio						
			d concurrently with the pre	pared samples.					
	st Organisms:	In-house cultures							
Test Initiated		21 March 2014 a	t 1400h						
Sample 6520:	CDT7000	Sample 6521.CP							

Sample 6520: GRT7000		Sample 6521:GF	RT8000/9000	Vacant
Concentration	% Unaffected	Concentration % Unaffected		
(mg/L)	(Mean ± SD)	(mg/L)	(Mean ± SD)	
DMW Control	95.0 ± 10.0	DMW Control	95.0 ± 10.0	
62.5	95.0 ± 10.0	62.5	90.0 ± 11.6	
125.0	100 ± 0.0	125.0	95.0 ± 10.0	
250.0	90.0 ± 20.0	250.0	95.0 ± 10.0	
500.0	95.0 ± 10.0	500.0	95.0 ± 10.0	
1000.0	100 ± 0.0	1000.0	100 ± 0.0	
96-hr EC10 = >1000mg/L 96-hr EC50 = >1000mg/L NOEC =1000mg/L LOEC =>1000mg/L		96-hr EC10 = >1 96-hr EC50 = >1 NOEC =1000mg LOEC = >1000m	000mg/L g/L	

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % unaffected	>80.0%	95.0%	Yes
Reference Toxicant within cusum chart limits	5.3-78.5µg Cu/L	12.5µg Cu/L	Yes

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 2 of 2)

Test Report Authorised by:

Dr Rick Krassoi, Director on 11 April 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

ESA (2013) SOP 117 – Freshwater and Marine Fish Imbalance Test. Issue No 10. Ecotox Services Australasia, Sydney, NSW

USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth edition EPA-821-R-02-012. United States Environmental Protection Agency, Office of Research and Development, Washington FC, USA

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

2 9420 9484 W≥ww

(Page 1 of 2)

This document is issued in accordance with NATA's accreditation requirements

Client:	ERM Building C, 33 Sau	nders Street	ESA Job#: Date Sampl			
	Pyrmont NSW 2009		Date Receiv			
Attention:	Olivia Patterson		Sampled By ESA Quote			
Attention:	Olivia Patterson		ESA Quote	# : PL1097_q01		
	0	0				
Lab ID No.: 6520	Sample Name: GRT7000	Sample Descri		ature in apparent good condition		
6521	GRT8000/9000			ature in apparent good condition		
0021	01110000/0000	Chemioarrecen		atare in apparent good condition		
Test Performe	d:	96-hr acute surv	vival test using the f	reshwater shrimp <i>Paratya</i>		
		australiensis				
Test Protocol:			ESA 2012), based o			
Test Temperat			erformed at 20±1°C.			
Deviations from		Nil				
Comments on	Solution	0		were prepared by adding either		
Preparation:				le 6521 "GRT8000/9000" into dilute maining test concentrations were		
				ghest test concentrations were		
				ently with the prepared samples.		
Source of Test	Organisms	Hatchery reared		entry with the prepared samples.		
Test Initiated:	organishis.	25 March 2014				
1001 Initiatiour		20 March 2011				
Sample 6520: G	RT7000	Sample 6521:GF	RT8000/9000	Vacant		
Concentration	% Unaffected	Concentration	% Unaffected			
(mg/L)	(Mean ± SD)	(mg/L)	(Mean ± SD)			
DMW Control	90.0 ± 11.6	DMW Control	90.0 ± 11.6			
62.5	100 ± 0.0	62.5	95.0 ± 10.0			
125.0	85.0 ± 19.2	125.0	100 ± 0.0			
250.0	100 ± 0.0	250.0	90.0 ± 11.6			
500.0	95.0 ± 10.0	500.0	95.8 ± 8.3			
1000.0	76.7 ± 17.6	1000.0	100 ± 0.0			
96-hr EC10 = 750.5mg/L* 96-hr EC50 = >1000mg/L		96-hr EC10 = >1 96-hr EC50 = >1	000mg/L			
NOEC =1000m LOEC =>1000r	•	NOEC =1000mg LOEC =>1000m				
		LOEC ->1000m	у/L			
°95% confidence	limits not available					

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % unaffected	<u>></u> 90.0%	90.0%	Yes
Reference Toxicant within cusum chart limits	51.5-647.6µg Cu/L	264.7µg Cu/L	Yes

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 2 of 2)

V/L Vamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 11 April 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

- ESA (2012) SOP 123 *Acute Toxicity Test Using Freshwater Shrimp.* Issue No 2. Ecotox Services Australasia, Sydney, NSW
- USEPA (1996) Ecological Effects Test Guidelines: OPPTS 850.1035 Mysid Acute Toxicity Test. Public Draft. United States Environmental Protection Agency, Washington DC, USA.

(Page 1 of 2)

This document is issued in accordance with NATA's accreditation requirements

Client: Attention: Client Ref:	ERM Building C, 33 Saur Pyrmont NSW2009 Olivia Patterson Notsupplied		ESA Job#: Date Sampled: Date Received: Sampled By: ESA Quote#:	PR1097 07 March 2014 10 March 2014 Client PL1097_q01
Lab ID No.: 6520 6521	Sample Name: GRT7000 GRT8000/9000		cription: eived at room temperature in a eived at room temperature in a	
Test Performe Test Protocol Test Tempera Deviations fro Comments or Preparation: Source of Tes Test Initiated:	: ature: om Protocol: n Solution st Organisms:	disperma ESA SOP 11 The test was The test vials The highest sample 652 Swedish sta were achieve SIS media.	5	method 221 (2006) prepared by adding either 521 "GRT8000/9000" into naining test concentrations est test concentrations with

Sample 6520: GRT7000		Sample 6521: GI	RT8000/9000	Vacant
Concentration Specific		Concentration	Specific	
(mg/L)	Growth Rate	(mg/L)	Growth Rate	
	(Mean ± SD)		(Mean ±SD)	
SIS Control	0.28 ± 0.01	SIS Control	0.28 ± 0.01	
62.5	0.27 ± 0.01	62.5	0.28 ± 0.02	
125.0	0.27 ± 0.02	125.0	0.26 ± 0.01	
250.0	0.27 ± 0.03	250.0	0.26 ± 0.03	
500.0	0.27 ± 0.03	500.0	0.27 ± 0.04	
1000.0	0.28 ± 0.02	1000.0	0.27 ± 0.03	
7 day IC10 = >1 7 day IC50 = >1 NOEC =1000m LOEC =>1000n	000mg/L g/L	7 day IC10 = >10 7 day IC50 = >10 NOEC =1000mg LOEC =>1000m	000mg/L g/L	

QA/QC Parameter	Criterion	This Test	Criterion met?
Control frond doubling time	<2.5 days	2.4 days	Yes
Reference Toxicant within cusum chart limits	2.3-6.5gKCI/L	3.6g KCI/L	Yes

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

W>www.ecotox.com.a

(Page 2 of 2)

Dr Rick Krassoi, Director on 11 April 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

Test Report Authorised by:

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

ESA (2012) SOP 112 – Duckweed Growth Inhibition Test. Issue No. 5. Ecotox Services Australasia, Sydney NSW

OECD (2006) *Lemna sp.* Growth Inhibition Test. Method 221. OECD Guideline for the Testing of Chemicals. Organisation for Economic Cooperation and Development, Paris

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 1 of 2)

This document is issued in accordance with NATA's accreditation requirements

Client: ERM Building C, 33 Sau		nders Street	ESA Job#: DateSampled:	PR1097 07 March2014					
	Pyrmont	nuels Street	Date Received:	10 March 2014					
	NSW 2009		Sampled By:	Client					
Attention:	Olivia Patterson		ESA Quote#:	PL1097_q01					
Lab ID No.: 6520 6521	Sample Name: GRT7000 GRT8000/9000	Sample Description: Chemical received at room temperature in apparent good condition Chemical received at room temperature in apparent good condition							
Test Perform	ed:	72-hr microalga capricornutum	I growth inhibition test using	the green alga Selenastrum					
Test Protoco	l:	ESA SOP 103 (ESA 2013), based on USEPA (2002)							
Test Tempera	ature:	The test was performed at $25\pm1^{\circ}$ C.							
Deviations fr	om Protocol:	Nil	Nil						
Comments o	n Solution	The highest test concentrations were prepared by adding either sample							
Preparation:		6520 "GRT7000" or sample 6521 "GRT8000/9000" into USEPA media. The remaining test concentrations were achieved by serially diluting the							
		highest test concentrations with USEPA media.							
		A USEPA control was tested concurrently with the prepared samples.							
	Source of Test Organisms:		ESA Laboratory culture, originally sourced from CSIRO Microalgal						
Source of Te	.								
Source of Te Test Initiated	•	Supply Service, 21 March 2014							

Sample 6520: GF	RT7000		Sample 6521: GF	RT8000/9000	
Concentration	Cell Yie	ld	Concentration	Cell Yield	
(mg/L)	x10⁴ cel	ls/mL	(mg/L)	x10⁴ cells/mL	
	(Mean	±SD)		(Mean ±SD)	
USEPAControl	15.6 ±	0.7	USEPAControl	15.6 ± 0.7	
Colour Control	10.9 ±	1.0 *	Colour Control	10.6 ± 0.9 *	
62.5	13.9 ±	2.2	62.5	13.9 ± 0.8	
125.0	14.6 ±	1.3	125.0	15.1 ± 2.0	
250.0	15.3 ±	2.9	250.0	14.6 ± 0.6	
500.0	15.7 ±	2.9	500.0	13.1 ± 2.5**	
1000.0	12.3 ±	1.7**	1000.0	11.4 ± 1.9**	
72-hr IC10 = 661.6mg/L*** 72-hr IC50 = >1000mg/L NOEC =500mg/L LOEC = 1000mg/L			72-hr IC10 = 335 72-hr IC50 =>100 NOEC =250mg/ LOEC =500mg/I	00mg/L L	

*Significantly lower cell yield compared with the USEPA Control (Homoscedastic t Test, 1-tailed, P=0.05) **Significantly lower cell yield compared with the USEPA Control (Bonferroni t Test, 1-tailed, P=0.05) ***95% confidence limits are not available

ABN > 45 094 714 904 ECOTOX Services Australasia Pty Ltd 2 9420 9481 T > 6 1

9420 9484

CHAIN – OF CUSTODY / SERVICE REQUEST FORM

Datasheet ID 601.1 Last Revised: 22 January 2013

Customer: <u>ERM (Ref 02222833)</u>

Contact Name: Olivia Patterson

Phone: <u>0285848894</u>

Email: <u>olivia.patterson@erm.com</u>

Ship To: <u>Ecotox Services Australia Ptv Ltd. 27/2 Chaplin Dr. Lane Cove. NSW 2066</u> Attention: <u>Rick Krassoi</u>

Sample Date	Sample Time	Sample Name	Sample Method	Number and Volume of Containers			Test Red Reverse i	quested for Guida	nce)	Comments / Instruction
Day/Month/Year	(e.g Grab Composite etc) (Exactly as written on the sample vessel)	(e.g 2 x 1L)	72 hour algal growth sc	7 Day Duckweed LD	96 hour Acute Shrimp	96 hour acute fish		Note that testing will be delayed if an incomplete chain of custody is received Additional treatment of samples (i.e. spiking) Subcontracted services (i.e chemical analyses) Dilutions required (if different than 100% down to 6.25%) Sample holding time restrictions (if applicable) Sample used for litigation (if applicable) Note : An MSDS must be attached if Available ESA Project Number: PR		
7/3/14		GRT 7000	Product	1 x 2L	~	1	~	1		Also, please use previously
7/3/14		GRT 8000 / 9000	Product	1 x 2L	1	1	1	~		Provided soils -crust up
										And send WAF to
										ALS Environmental
										277 – 289 Woodpark Road
										Sydney 2164

1) Released By: Olivia	a Patterson	2) Received By: Tina		Released By:		2) Received By:	
Date: 10/03/14		Date:10/03/14		Date:		Date:	
Of: ERM	Time: 11:00 am	Of:	Time: 15:00	Of:	Time:	Of:	Time:
		ESA					

Note that the chain-of-custody documentation will provide definitive information on the tests to be performed.

Ecotox Services Australasia . Unit 27, 2 Chaplin Drive, Lane Cove NSW 2066 AUSTRALIA

Phone: 61 2 9420-9481 Fax 61 2 9420-9484 <u>Info@ecotox.com.au</u>

Page_of ____

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean cell density	216.0x10 ⁴ cells/mL	16.6x10 ⁴ cells/mL	Yes
Control coefficient of variation	<20%	4.7%	Yes
Reference Toxicant within cusum chart limits	1.5-6.2gKCl/L	2.8g KCI/L	Yes

F/L Vamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 11 April 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full.

Citations:

- ESA (2013) ESA SOP 103 Green Alga, Selenastrum capricornutum, Growth Test. Issue No 10. Ecotox Services Australasia, Sydney, NSW.
- USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth Edition. EPA-821-R-02-013. United States Environmental Protection Agency, Office of Research and Development, Washington DC, USA,

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 Ti>61 2 9420 9481 F>6

1 2 9420 9484 W≥wi

v>www.ecotox.com.au

Chain-of-Custody Documentation

Sample Receipt Notification

Attention	: Olivia Patterson			
Client	: ERM Building C, 33 Saunde Pyrmont NSW 2009	rs Street		
	: olivia.patterson@erm.c : 02 85848894 :	om		
Date	: 12/03/2014			
Re	: Receipt of Samples		Pages :	2
ESA Project	: PL1097	✓ For Review	Additional Documer	ntation Required - Please Respond

Sample Delivery Details

Completed Chain of Custody accompanied samples:	YES
Samples received in apparent good condition and correctly bottled:	YES
Security seals on sample bottles and esky intact:	YES

Date samples received	: 10/03/2014
Time samples received	: 15:00
No. of samples received	: 2
Sample matrix	: Chemical
Sample temperature	: room temperature
Comments : Includes 1x	2L GRT7000 (ESA ID# 6520) and 1x2L GRT8/9000 (ESA ID# 6521)

Contact Details

Customer Ser	vices Officer:	Tina Micevska
Telephone	: 61 2 9420 948	1
Facsimile	: 61 2 9420 948	4
Email	: tmicevska@ed	cotox.com.au

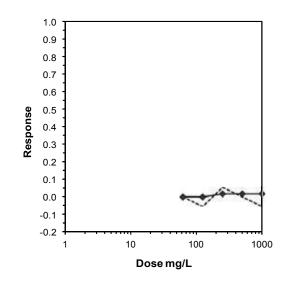
Please contact customer services officer for all queries or issues regarding samples

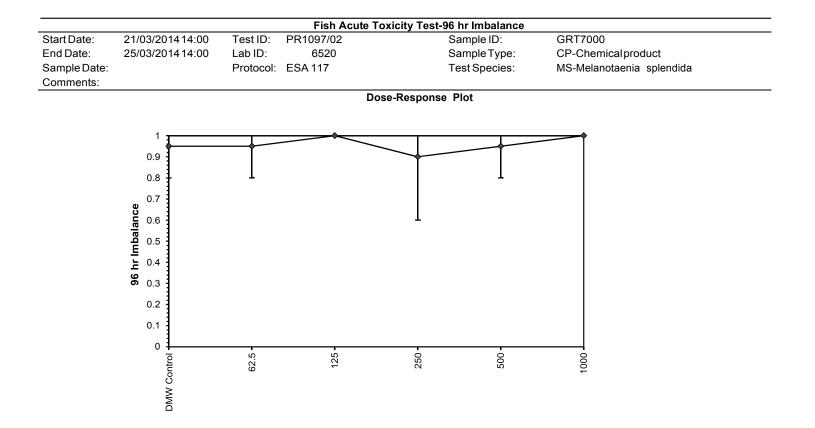
Note that the chain-of-custody provides definitive information on the tests to be performed

Ecotox Services Australia ABN 45 094 714 904 Unit 27, 2 Chaplin Drive Lane Cove NSW 2066 Australia

Phone : 61 2 9420 9481 Fax : 61 2 9420 9484 Email : info@ecotox.com.au

Statistical Printouts for the Larval Fish Imbalance Tests


				Fish Acu	te Toxicity Test-96 hr Imbalance	
Start Date:	21/03/2014	14:00	Test ID:	PR1097/02	Sample ID:	GRT7000
End Date:	25/03/2014	14:00	Lab ID:	6520	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 117	Test Species:	MS-Melanotaenia splendida
Comments:						
Conc-mg/L	1	2	3	4		
DMW Control	0.8000	1.0000	1.0000	1.0000		
62.5	1.0000	1.0000	1.0000	0.8000		
125	1.0000	1.0000	1.0000	1.0000		
250	1.0000	0.6000	1.0000	1.0000		
500	1.0000	1.0000	1.0000	0.8000		
1000	1.0000	1.0000	1.0000	1.0000		

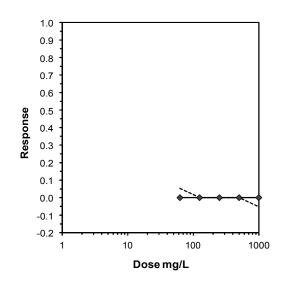

			Transform: Arcsin Square Root				Rank	1-Tailed	Isotonic		
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4			0.9667	1.0000
62.5	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9667	1.0000
125	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9667	1.0000
250	0.9000	0.9474	1.2305	0.8861	1.3453	18.660	4	17.50	10.00	0.9500	0.9828
500	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9500	0.9828
1000	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9500	0.9828

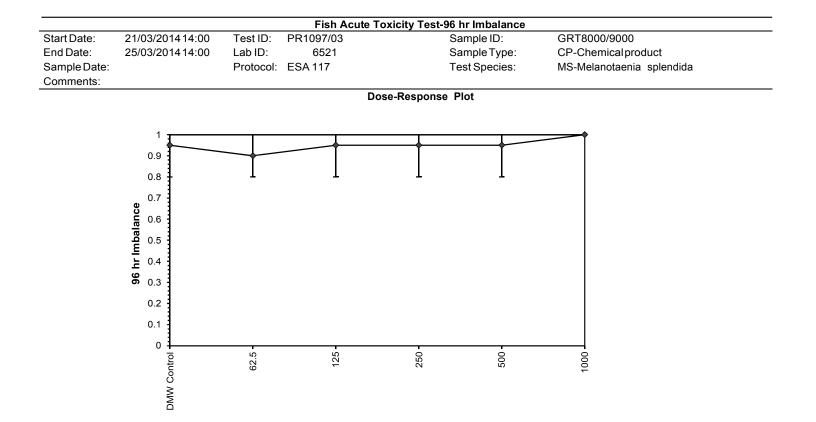
AuxiliaryTests	Statistic	Critical	Skew Ku	urt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.762065	0.916	-1.76412 3.060	0606
Equality of variance cannot be confirmed				

Hypothesis 1	Гest (1-tail,0.05	5)	NOEC	LOEC	ChV	TU	
Steel's Many-One Rank Test			1000	>1000			
Treatments v	s DMW Control						
				Log	-Logit Inter	polation (20	0 Resamples)
Point	mg/L	SD	95% C	L(Exp)	Skew		
1005	>1000						

IC05	>1000	
IC10	>1000	
IC15	>1000	
IC20	>1000	
IC25	>1000	
IC40	>1000	
IC50	>1000	

			Fish A	cute Toxic	ity Test-96	hr Imbala	nce	
Start Date:	21/03/201414:00	Test ID:	PR1097/02		S	Sample ID:		GRT7000
End Date:	25/03/201414:00	Lab ID:	6520		S	Sample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 117		Т	est Specie	s:	MS-Melanotaenia splendida
Comments:								
			_	Au	xiliary Data	a Summary		_
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N
DMW Control			95.00	80.00	100.00	10.00	3.33	
62.5	i		95.00	80.00	100.00	10.00	3.33	4
125	j		100.00	100.00	100.00	0.00	0.00	4
250			90.00	60.00	100.00	20.00	4.97	4
500			95.00	80.00	100.00	10.00	3.33	4
1000			100.00	100.00	100.00	0.00	0.00	4
DMW Control	рН		8.10	8.10	8.10	0.00	0.00	1
62.5	5		8.10	8.10	8.10	0.00	0.00	1
125	5		8.10	8.10	8.10	0.00	0.00	1
250	1		8.10	8.10	8.10	0.00	0.00	1
500	1		8.10	8.10	8.10	0.00	0.00	1
1000	1		8.10	8.10	8.10	0.00	0.00	1
DMW Control	DO %		101.80	101.80	101.80	0.00	0.00	1
62.5	i		99.50	99.50	99.50	0.00	0.00	1
125	j		98.10	98.10	98.10	0.00	0.00	1
250	1		98.90	98.90	98.90	0.00	0.00	1
500)		98.30	98.30	98.30	0.00	0.00	1
1000	1		98.10	98.10	98.10	0.00	0.00	1
DMW Control	Conductivity uS/c	m	168.40	168.40	168.40	0.00	0.00	1
62.5	i		166.60	166.60	166.60	0.00	0.00	1
125	i		166.60	166.60	166.60	0.00	0.00	1
250	1		166.70	166.70	166.70	0.00	0.00	1
500	1		167.00	167.00	167.00	0.00	0.00	1
1000)		168.90	168.90	168.90	0.00	0.00	1


				Fish Acu	ite Toxicity Test-96 hr Imbalance	
Start Date:	21/03/2014	14:00	Test ID:	PR1097/03	Sample ID:	GRT8000/9000
End Date:	25/03/2014	14:00	Lab ID:	6521	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 117	Test Species:	MS-Melanotaenia splendida
Comments:						
Conc-mg/L	1	2	3	4		
DMW Control	0.8000	1.0000	1.0000	1.0000		
62.5	1.0000	0.8000	1.0000	0.8000		
125	1.0000	0.8000	1.0000	1.0000		
250	0.8000	1.0000	1.0000	1.0000		
500	1.0000	1.0000	1.0000	0.8000		
1000	1.0000	1.0000	1.0000	1.0000		


			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Isot	onic
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4			0.9500	1.0000
62.5	0.9000	0.9474	1.2262	1.1071	1.3453	11.212	4	16.00	10.00	0.9500	1.0000
125	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9500	1.0000
250	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9500	1.0000
500	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	18.00	10.00	0.9500	1.0000
1000	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4	20.00	10.00	0.9500	1.0000

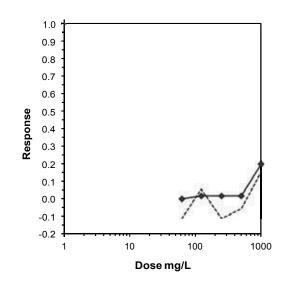
Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.771169	0.916	-0.98097 -0.51806
Equality of variance cannot be confirmed			

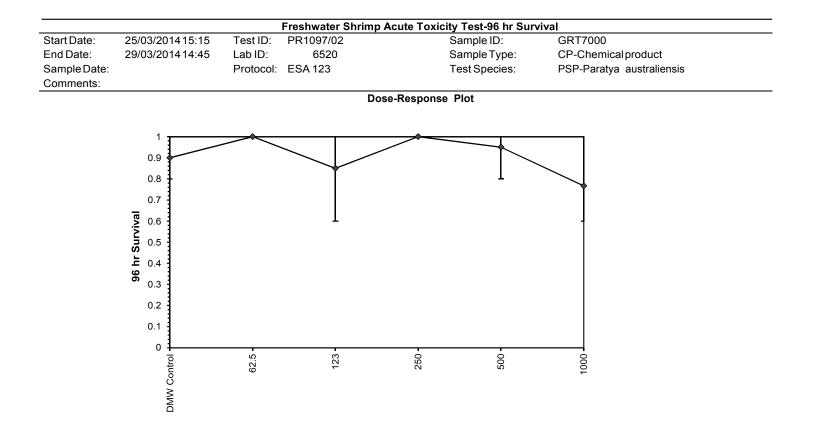
Hypothesis	Test (1-tail, 0.05))	NOEC	LOEC	ChV	TU			
Steel's Many	/-One Rank Test		1000	>1000					
Treatments	vs DMWControl								
			Log-Logit Interpolation (200 Resamples)						
Point	mg/L	SD	95% C	L(Exp)	Skew				
1005	1000								

IC05	>1000	
IC10	>1000	
IC15	>1000	
IC20	>1000	
IC25	>1000	
IC40	>1000	
IC50	>1000	

			Fish A	cute Toxic	ity Test-96	hr Imbala	nce	
Start Date:	21/03/201414:00	Test ID:	PR1097/03		S	ample ID:		GRT8000/9000
End Date:	25/03/201414:00	Lab ID:	6521		S	ample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 117		Т	est Specie	s:	MS-Melanotaenia splendida
Comments:								
				Au				
Conc-mg/L	Parameter		Mean	Min	Мах	SD	CV%	N
DMW Control	% Un-affected		95.00	80.00	100.00	10.00	3.33	4
62.5			90.00	80.00	100.00	11.55	3.78	4
125			95.00	80.00	100.00	10.00	3.33	4
250	1		95.00	80.00	100.00	10.00	3.33	4
500	1		95.00	80.00	100.00	10.00	3.33	4
1000	1		100.00	100.00	100.00	0.00	0.00	4
DMW Control	рН		8.10	8.10	8.10	0.00	0.00	1
62.5	i i		8.10	8.10	8.10	0.00	0.00	1
125	i i		8.10	8.10	8.10	0.00	0.00	1
250	1		8.10	8.10	8.10	0.00	0.00	1
500	1		8.10	8.10	8.10	0.00	0.00	1
1000	1		8.10	8.10	8.10	0.00	0.00	1
DMW Control	DO %		101.80	101.80	101.80	0.00	0.00	1
62.5	i i		98.70	98.70	98.70	0.00	0.00	1
125	i		98.90	98.90	98.90	0.00	0.00	1
250	1		98.90	98.90	98.90	0.00	0.00	1
500	1		98.70	98.70	98.70	0.00	0.00	1
1000	1		98.40	98.40	98.40	0.00	0.00	1
DMW Control	Conductivity uS/c	m	168.40	168.40	168.40	0.00	0.00	1
62.5			166.50	166.50	166.50	0.00	0.00	1
125	i		166.50	166.50	166.50	0.00	0.00	1
250	1		166.60	166.60	166.60	0.00	0.00	1
500	1		167.20	167.20	167.20	0.00	0.00	1
1000	1		168.00	168.00	168.00	0.00	0.00	1

Statistical Printouts for the Freshwater Shrimp Tests


				Freshwater Shri	mp Acute Toxicity Test-96 hr Sur	vival
Start Date:	25/03/2014	15:15	Test ID:	PR1097/02	Sample ID:	GRT7000
End Date:	29/03/2014	14:45	Lab ID:	6520	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 123	Test Species:	PSP-Paratya australiensis
Comments:						
Conc-mg/L	1	2	3	4		
DMW Control	1.0000	0.8000	0.8000	1.0000		
62.5	1.0000	1.0000	1.0000	1.0000		
123	1.0000	0.8000	1.0000	0.6000		
250	1.0000	1.0000	1.0000	1.0000		
500	0.8000	1.0000	1.0000	1.0000		
1000	1.0000	0.6667	0.8000	0.6000		

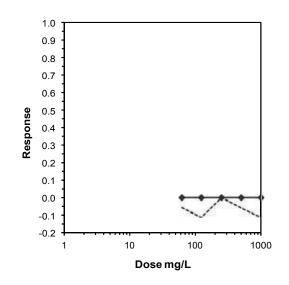

			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Isot	onic
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	0.9000	1.0000	1.2262	1.1071	1.3453	11.212	4			0.9500	1.0000
62.5	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	22.00	10.00	0.9500	1.0000
123	0.8500	0.9444	1.1709	0.8861	1.3453	18.840	4	17.00	10.00	0.9333	0.9825
250	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	22.00	10.00	0.9333	0.9825
500	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4	20.00	10.00	0.9333	0.9825
1000	0.7667	0.8519	1.0735	0.8861	1.3453	18.946	4	14.00	10.00	0.7619	0.8020

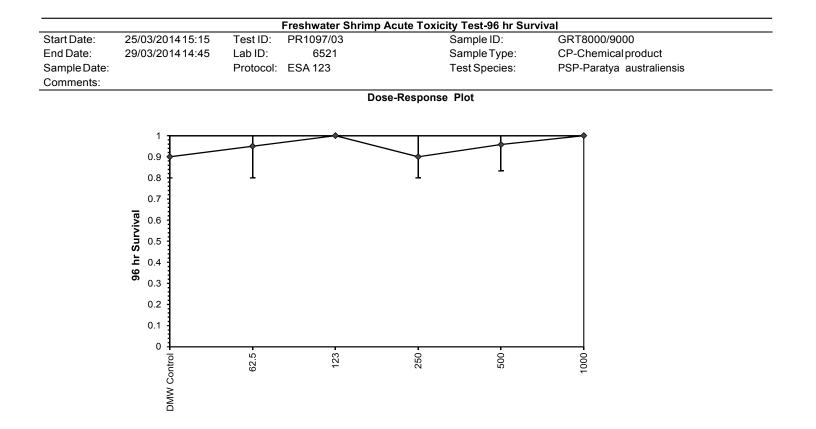
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates norm	al distribution (p > 0.05)			0.965517	0.916	-0.13866	0.330635
Equality of variance cannot be cont	firmed							
Hypothosis Tost (1 tail 0.05)	NOEC		ChV	TH				

Hypothesis Test (1-tail, 0.05)	NUEC	LOEC	Cnv	10	
Steel's Many-One Rank Test	1000	>1000			
Treatments vs DMWControl					
		Log-	Logit Inter	polation (200	Resamples)

Point	mg/L	SD	95% CL(Exp)	Skew
IC05	607.28			
IC10	750.53			
IC15	880.66			
IC20	>1000			
IC25	>1000			
IC40	>1000			
IC50	>1000			

			Freshwater S	hrimp Acu	ute Toxicity	/ Test-96 h	r Surviva	
Start Date:	25/03/201415:15	Test ID:	PR1097/02		S	ample ID:		GRT7000
End Date:	29/03/201414:45	Lab ID:	6520		S	Sample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 123		Т	est Specie	s:	PSP-Paratya australiensis
Comments:								
				Au				
Conc-mg/L	Parameter		Mean	Min	Мах	SD	CV%	N
DMW Control	8 Survival		90.00	80.00	100.00	11.55	3.78	4
62.5	5		100.00	100.00	100.00	0.00	0.00	4
123	}		85.00	60.00	100.00	19.15	5.15	4
250)		100.00	100.00	100.00	0.00	0.00	4
500)		95.00	80.00	100.00	10.00	3.33	4
1000)		76.67	60.00	100.00	17.64	5.48	4
DMW Control	рН	_	8.10	8.10	8.10	0.00	0.00	- 1
62.5	5		8.10	8.10	8.10	0.00	0.00	1
123	3		8.10	8.10	8.10	0.00	0.00	1
250)		8.10	8.10	8.10	0.00	0.00	1
500)		8.10	8.10	8.10	0.00	0.00	1
1000)		8.10	8.10	8.10	0.00	0.00	1
DMW Control	Cond uS/cm	_	168.80	168.80	168.80	0.00	0.00	- 1
62.5	5		169.00	169.00	169.00	0.00	0.00	1
123	3		168.90	168.90	168.90	0.00	0.00	1
250)		169.30	169.30	169.30	0.00	0.00	1
500)		169.90	169.90	169.90	0.00	0.00	1
1000)		171.30	171.30	171.30	0.00	0.00	1
DMW Control	DO %	-	101.90	101.90	101.90	0.00	0.00	1
62.5	5		101.90	101.90	101.90	0.00	0.00	1
123	3		101.70	101.70	101.70	0.00	0.00	1
250)		101.70	101.70	101.70	0.00	0.00	1
500)		101.90	101.90	101.90	0.00	0.00	1
1000)		101.80	101.80	101.80	0.00	0.00	1


				Freshwater Sh	nrimp Acute Toxicity Test-96 hr Su	vival
Start Date:	25/03/2014	15:15	Test ID:	PR1097/03	Sample ID:	GRT8000/9000
End Date:	29/03/2014	14:45	Lab ID:	6521	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 123	Test Species:	PSP-Paratya australiensis
Comments:						
Conc-mg/L	1	2	3	4		
DMW Control	1.0000	0.8000	0.8000	1.0000		
62.5	0.8000	1.0000	1.0000	1.0000		
123	1.0000	1.0000	1.0000	1.0000		
250	1.0000	1.0000	0.8000	0.8000		
500	0.8333	1.0000	1.0000	1.0000		
1000	1.0000	1.0000	1.0000	1.0000		

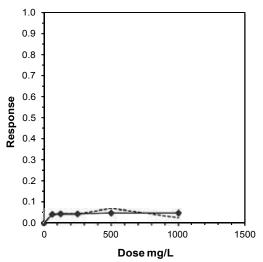

			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Isot	onic
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	0.9000	1.0000	1.2262	1.1071	1.3453	11.212	4			0.9504	1.0000
62.5	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4	20.00	10.00	0.9504	1.0000
123	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	22.00	10.00	0.9504	1.0000
250	0.9000	1.0000	1.2262	1.1071	1.3453	11.212	4	18.00	10.00	0.9504	1.0000
500	0.9583	1.0648	1.2965	1.1503	1.3453	7.521	4	21.00	10.00	0.9504	1.0000
1000	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	22.00	10.00	0.9504	1.0000

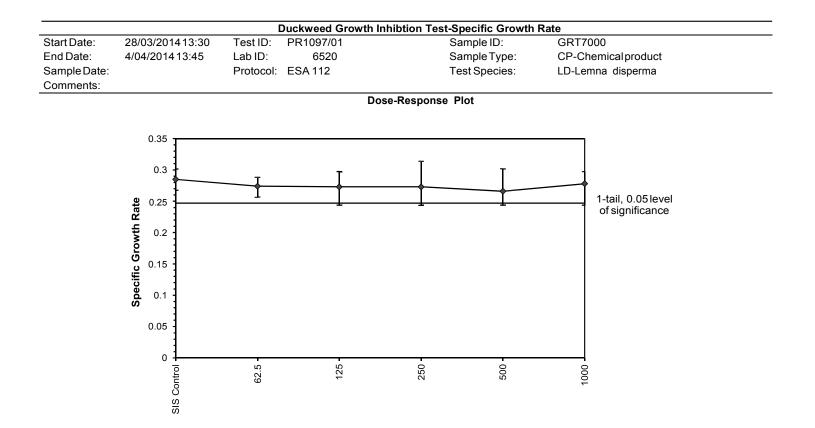
Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.892434	0.916	-0.51806	-0.68089
Equality of variance cannot be confirmed				

Hypothesis	Test (1-tail,0.05))	NOEC	LOEC	ChV	TU	
Steel's Many-	-One Rank Test		1000	>1000			
Treatments v	s DMW Control						
				Log	-Logit Inter	polation (200	0 Resamples)
Point	mg/L	SD	95% C	L(Exp)	Skew		
1005	. 1000						

IC05	>1000	
IC10	>1000	
IC15	>1000	
IC20	>1000	
IC25	>1000	
IC40	>1000	
IC50	>1000	

			Freshwater S	hrimp Acu	ute Toxicity	/ Test-96 h	r Surviva	1
Start Date:	25/03/201415:15	Test ID:	PR1097/03		S	ample ID:		GRT8000/9000
End Date:	29/03/201414:45	Lab ID:	6521		S	ample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 123		Т	est Specie	s:	PSP-Paratya australiensis
Comments:								
				Au	xiliary Data	Summary	/	
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N
DMW Control	8 Survival		90.00	80.00	100.00	11.55	3.78	4
62.5	5		95.00	80.00	100.00	10.00	3.33	4
123	3		100.00	100.00	100.00	0.00	0.00	4
250)		90.00	80.00	100.00	11.55	3.78	4
500)		95.83	83.33	100.00	8.33	3.01	4
1000)		100.00	100.00	100.00	0.00	0.00	4
DMW Control	IрН	-	8.10	8.10	8.10	0.00	0.00	1
62.5	5		8.10	8.10	8.10	0.00	0.00	1
123	3		8.10	8.10	8.10	0.00	0.00	1
250)		8.10	8.10	8.10	0.00	0.00	1
500)		8.10	8.10	8.10	0.00	0.00	1
1000)		8.10	8.10	8.10	0.00	0.00	1
DMW Control	Cond uS/cm	-	168.80	168.80	168.80	0.00	0.00	1
62.5	5		168.90	168.90	168.90	0.00	0.00	1
123	}		169.00	169.00	169.00	0.00	0.00	1
250)		169.20	169.20	169.20	0.00	0.00	1
500)		169.70	169.70	169.70	0.00	0.00	1
1000)		171.00	171.00	171.00	0.00	0.00	1
DMW Control	DO %	_	101.90	101.90	101.90	0.00	0.00	- 1
62.5	5		102.10	102.10	102.10	0.00	0.00	1
123	}		102.20	102.20	102.20	0.00	0.00	1
250)		102.00	102.00	102.00	0.00	0.00	1
500)		102.20	102.20	102.20	0.00	0.00	1
1000)		102.20	102.20	102.20	0.00	0.00	1

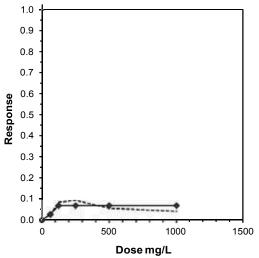

Statistical Printouts for the Duckweed Growth Inhibition Tests

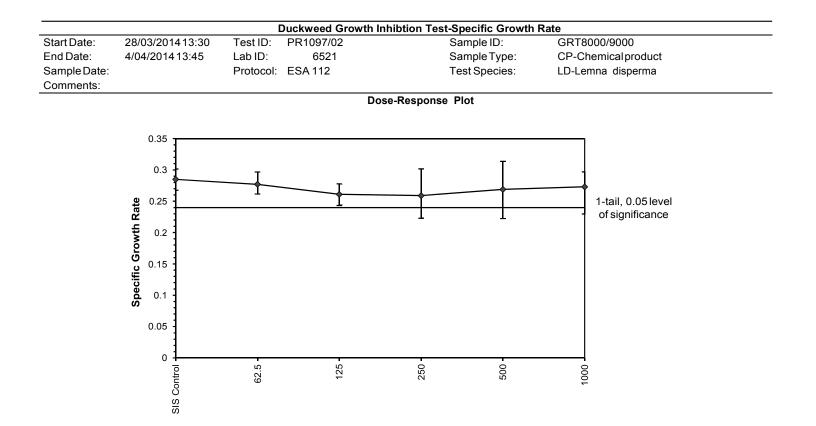

			D	uckweed Grow	th Inhibtion Test-Specific Growth	Rate
Start Date:	28/03/2014	13:30	Test ID:	PR1097/01	Sample ID:	GRT7000
End Date:	4/04/20141	3:45	Lab ID:	6520	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 112	Test Species:	LD-Lemna disperma
Comments:						
Conc-mg/L	1	2	3	4		
SIS Control	0.2674	0.2830	0.2878	0.3015		
62.5	0.2830	0.2674	0.2560	0.2878		
125	0.2971	0.2830	0.2674	0.2435		
250	0.2435	0.3139	0.2674	0.2674		
500	0.2560	0.2618	0.3015	0.2435		
1000	0.2435	0.2971	0.2878	0.2830		

				Transform	n: Untrans	formed			1-Tailed		Isoto	onic
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
SIS Control	0.2849	1.0000	0.2849	0.2674	0.3015	4.933	4				0.2849	1.0000
62.5	0.2736	0.9601	0.2736	0.2560	0.2878	5.342	4	0.721	2.410	0.0380	0.2736	0.9601
125	0.2727	0.9573	0.2727	0.2435	0.2971	8.409	4	0.771	2.410	0.0380	0.2729	0.9578
250	0.2731	0.9583	0.2731	0.2435	0.3139	10.787	4	0.752	2.410	0.0380	0.2729	0.9578
500	0.2657	0.9325	0.2657	0.2435	0.3015	9.422	4	1.219	2.410	0.0380	0.2718	0.9538
1000	0.2779	0.9752	0.2779	0.2435	0.2971	8.499	4	0.448	2.410	0.0380	0.2718	0.9538

AuxiliaryTests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution (p > 0.05)			0.977628		0.916		0.192739	-0.32638
Bartlett's Test indicates equal varia	nces (p = 0.82)	1			2.179199		15.08627			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1000	>1000			0.038036	0.133496	0.000163	0.000498	0.890182	5, 18
Treatments vs SIS Control										

			Li	near Interpolation (200 Resamples)
Point	mg/L	SD	95% CL(Exp)	Skew
IC05	>1000			
IC10	>1000			
IC15	>1000			1.0
IC20	>1000			0.9
IC25	>1000			0.9
IC40	>1000			0.8 -
IC50	>1000			0.7


			Duckweed Gr	owth Inhib	tion Test-	<u>Specific</u> Gr	owth Rat	e
Start Date:	28/03/201413:30	Test ID:	PR1097/01		5	Sample ID:		GRT7000
End Date:	4/04/2014 13:45	Lab ID:	6520		5	Sample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 112		1	Fest Specie	s:	LD-Lemna disperma
Comments:								
				Au	xiliary Data	a Summary	/	_
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	Ν
SIS Control	Specific Growth	Rate	0.28	0.27	0.30	0.01	41.61	4
62.5			0.27	0.26	0.29	0.01	44.19	4
125			0.27	0.24	0.30	0.02	55.53	4
250	1		0.27	0.24	0.31	0.03	62.85	4
500	1		0.27	0.24	0.30	0.03	59.55	4
1000			0.28	0.24	0.30	0.02	55.31	4
SIS Control	рН		6.50	6.50	6.50	0.00	0.00	1
62.5			6.50	6.50	6.50	0.00	0.00	1
125			6.50	6.50	6.50	0.00	0.00	1
250	1		6.50	6.50	6.50	0.00	0.00	1
500	1		6.50	6.50	6.50	0.00	0.00	1
1000	1		6.50	6.50	6.50	0.00	0.00	1
SIS Control	Cond uS/cm		283.00	283.00	283.00	0.00	0.00	1
62.5			284.00	284.00	284.00	0.00	0.00	1
125	i		284.00	284.00	284.00	0.00	0.00	1
250	1		284.00	284.00	284.00	0.00	0.00	1
500	1		285.00	285.00	285.00	0.00	0.00	1
1000	1		285.00	285.00	285.00	0.00	0.00	1

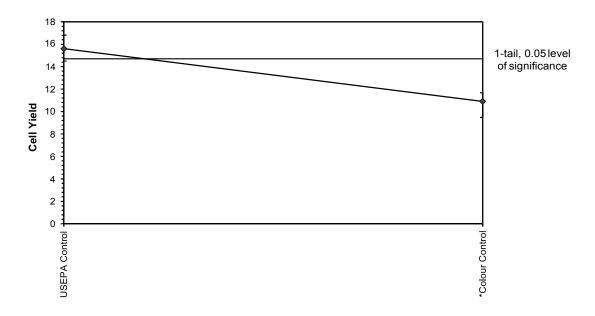

			D	uckweed Growth	Inhibtion Test-Specific Growth	Rate
Start Date:	28/03/2014	13:30	Test ID:	PR1097/02	Sample ID:	GRT8000/9000
End Date:	4/04/201413	3:45	Lab ID:	6521	Sample Type:	CP-Chemical product
Sample Date:			Protocol:	ESA 112	Test Species:	LD-Lemna disperma
Comments:						
Conc-mg/L	1	2	3	4		
SIS Control	0.2674	0.2830	0.2878	0.3015		
62.5	0.2830	0.2971	0.2674	0.2618		
125	0.2435	0.2674	0.2780	0.2560		
250	0.3015	0.2674	0.2435	0.2226		
500	0.3139	0.2226	0.2674	0.2728		
1000	0.2780	0.2878	0.2971	0.2299		

			Transform: Untransformed						1-Tailed			Isotonic	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean	
SIS Control	0.2849	1.0000	0.2849	0.2674	0.3015	4.933	4				0.2849	1.0000	
62.5	0.2773	0.9733	0.2773	0.2618	0.2971	5.745	4	0.411	2.410	0.0446	0.2773	0.9733	
125	0.2612	0.9168	0.2612	0.2435	0.2780	5.677	4	1.281	2.410	0.0446	0.2656	0.9321	
250	0.2587	0.9081	0.2587	0.2226	0.3015	13.083	4	1.415	2.410	0.0446	0.2656	0.9321	
500	0.2692	0.9447	0.2692	0.2226	0.3139	13.877	4	0.852	2.410	0.0446	0.2656	0.9321	
1000	0.2732	0.9589	0.2732	0.2299	0.2971	10.940	4	0.634	2.410	0.0446	0.2656	0.9321	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution (p > 0.05)			0.966906		0.916		-0.1777	0.158451
Bartlett's Test indicates equal varia	nces (p = 0.42))			4.978806		15.08627			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1000	>1000			0.044578	0.156455	0.00039	0.000684	0.722145	5, 18
Treatments vs SIS Control										

		Linear Interpolation (200 Resamples)								
Point	mg/L	SD	95% CL(Exp)	Skew						
C05	97.857									
IC10	>1000									
IC15	>1000				1.0					
IC20	>1000				0.9					
IC25	>1000				0.9					
IC40	>1000				0.8 -					
IC50	>1000				0.7					
					0.7					

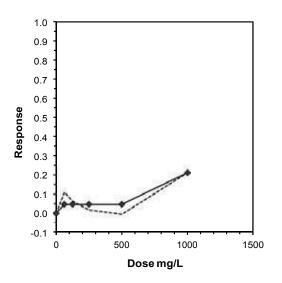
			Duckweed Gr	owth Inhib	tion Test-	Specific Gr	owth Rat	e	
Start Date:	28/03/201413:30	Test ID:	PR1097/02		9	Sample ID:		GRT8000/9000	
End Date:	4/04/201413:45 Lab ID:		6521	Sample Type:				CP-Chemical product	
Sample Date:		Protocol:	ESA 112		1	Fest Specie	s:	LD-Lemna disperma	
Comments:									
				Au	xiliary Data	a Summary	/		
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N	
SIS Control	Specific Growth	Rate	0.28	0.27	0.30	0.01	41.61	4	
62.5			0.28	0.26	0.30	0.02	45.51	4	
125			0.26	0.24	0.28	0.01	46.62	4	
250	1		0.26	0.22	0.30	0.03	71.11	4	
500	1		0.27	0.22	0.31	0.04	71.80	4	
1000	1		0.27	0.23	0.30	0.03	63.28	4	
SIS Control	рН		6.50	6.50	6.50	0.00	0.00	1	
62.5			6.40	6.40	6.40	0.00	0.00	1	
125			6.40	6.40	6.40	0.00	0.00	1	
250	1		6.40	6.40	6.40	0.00	0.00	1	
500	1		6.40	6.40	6.40	0.00	0.00	1	
1000	1		6.40	6.40	6.40	0.00	0.00	1	
SIS Control	Cond uS/cm		283.00	283.00	283.00	0.00	0.00	1	
62.5			284.00	284.00	284.00	0.00	0.00	1	
125	i		284.00	284.00	284.00	0.00	0.00	1	
250	1		284.00	284.00	284.00	0.00	0.00	1	
500	1		284.00	284.00	284.00	0.00	0.00	1	
1000	1		285.00	285.00	285.00	0.00	0.00	1	

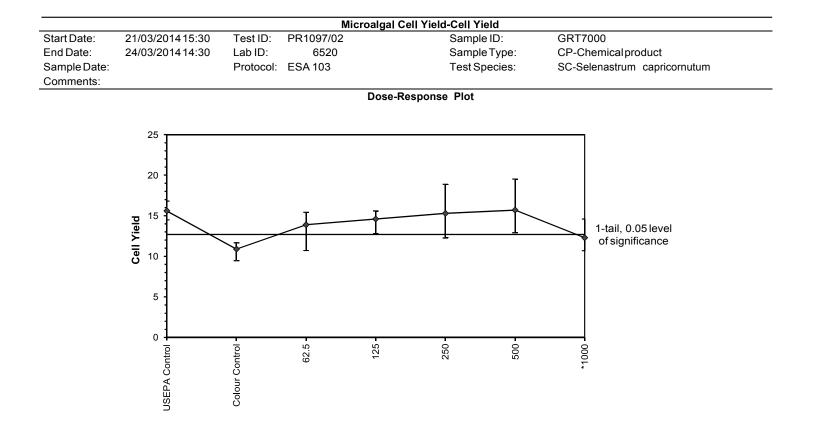

Statistical Printouts for the Selenastrum Growth Inhibition Tests

				Mi	croalgal (Cell Yield-	Cell Yield		
Start Date:	21/03/2014	15:30	Test ID:	PR1097/02b			Sample ID:		Controls
End Date:	24/03/2014	14:30	Lab ID:	6520			Sample Typ	e:	AQ-Aqueous
Sample Date:			Protocol:	ESA 103			Test Specie	s:	SC-Selenastrum capricornutum
Comments:									
Conc-	1	2	3	4	5	6	7	8	
USEPAControl	16.516	15.616	15.516	14.516	15.316	15.116	15.516	16.816	
Colour Control	l 11.116	9.516	11.416	11.716					

				Transform: Untransformed				1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	
USEPA Control	15.616	1.0000	15.616	14.516	16.816	4.731	8				
*Colour Control	10.941	0.7006	10.941	9.516	11.716	8.967	4	9.321	1.812	0.909	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.971514		0.859		-0.30783	-0.30369
F-Test indicates equal variances (p = 0.48)	1.763743		10.88245			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates significant differences	0.909002	0.058211	58.28167	0.67075	3.0E-06	1, 10
Treatments vs USEPA Control						

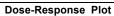

			М	icroalgal	Cell Yield-	Cell Yield			
Start Date:	21/03/2014 15:30	Test ID:	PR1097/02b			Sample ID:		Controls End	
Date:	24/03/2014 14:30	Lab ID:	6520			Sample Typ	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 103			Test Specie	s:	SC-Selenastrum	capricornutum
Comments:									
				Au	xiliary Dat	ta Summary	/		
Conc-	Parameter		Mean	Min	Max	SD	CV%	Ν	
USEPA Control	Cell Yield		15.62	14.52	16.82	0.74	5.50	8	
Colour Control			10.94	9.52	11.72	0.98	9.05	4	
USEPA Control	pН		7.40	7.40	7.40	0.00	0.00	1	
Colour Control			7.40	7.40	7.40	0.00	0.00	1	
USEPA Control	Conductivity uS/cn	n	94.10	94.10	94.10	0.00	0.00	1	
Colour Control			94.10	94.10	94.10	0.00	0.00	1	

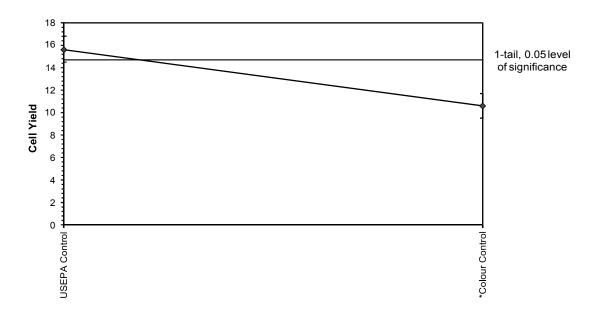

				N	licroalgal	Cell Yield	Cell Yield		
Start Date:	21/03/2014	15:30	Test ID:	PR1097/02			Sample ID:		GRT7000
End Date:	24/03/2014	14:30	Lab ID:	6520			Sample Type	e:	CP-Chemical product
Sample Date:			Protocol:	ESA 103			Test Species	S:	SC-Selenastrum capricornutum
Comments:									
Conc-mg/L	1	2	3	4	5	6	7	8	
USEPAControl	16.516	15.616	6 15.516	6 14.516	15.316	15.116	15.516	16.816	i
Colour Control	11.116	9.516	6 11.416	6 11.716					
62.5	14.316	10.716	6 15.116	5 15.416					
125	12.816	15.516	6 14.516	5 15.616					
250	18.916	12.316	6 13.816	6 16.316					
500	14.316	16.016	6 19.516	6 12.916					
1000	14.616	11.316	6 10.716	6 12.616					

		_		Transform: Untransformed				1-Tailed			Isotonic	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
USEPA Control	15.616	1.4273	15.616	14.516	16.816	4.731	8	*			15.616	1.0000
Colour Control	10.941	1.0000	10.941	9.516	11.716	8.967	4					
62.5	13.891	1.2696	13.891	10.716	15.416	15.600	4	1.464	2.508	2.955	14.884	0.9532
125	14.616	1.3359	14.616	12.816	15.616	8.886	4	0.849	2.508	2.955	14.884	0.9532
250	15.341	1.4022	15.341	12.316	18.916	18.896	4	0.233	2.508	2.955	14.884	0.9532
500	15.691	1.4342	15.691	12.916	19.516	18.149	4	-0.064	2.508	2.955	14.884	0.9532
*1000	12.316	1.1257	12.316	10.716	14.616	14.017	4	2.801	2.508	2.955	12.316	0.7887

Auxiliary Tests					Statistic	·	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	l distribution (o > 0.05)			0.969486		0.924		0.189119	0.152315
Bartlett's Test indicates equal varian	ces (p = 0.08)				9.740289		15.08627			
The control means are significantly of	different (p = 3	.01E-06)			9.321496		2.228139			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test		2.955382	0.189258	7.528857	3.701932	0.113252	5, 22			
Treatments vs USEPA Control										

		-				
				Lin	ear Interpola	tion (200 Resamples)
Point	mg/L	SD	95% CL	(Exp)	Skew	
IC05	509.64	256.40	0.00	748.52	-0.1205	
IC10	661.62					
IC15	813.59					1.0
IC20	965.57					0.9
IC25	>1000					-
IC40	>1000					0.8
IC50	>1000					0.7



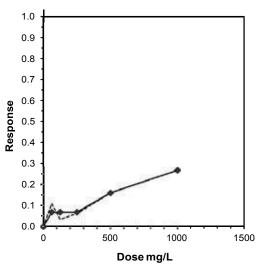

			М	icroalgal	Cell Yield-0	Cell Yield		
Start Date:	21/03/201415:30	Test ID:	PR1097/02		5	Sample ID:		GRT7000
End Date:	24/03/201414:30	Lab ID:	6520		5	Sample Typ	e:	CP-Chemicalproduct
Sample Date:		Protocol:	ESA 103		٦	Fest Specie	s:	SC-Selenastrum capricornutur
Comments:								
				Au	xiliary Data	a Summary	/	
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N
USEPAControl			15.62	14.52	16.82	0.74	5.50	8
Colour Control			10.94	9.52	11.72	0.98	9.05	4
62.5			13.89	10.72	15.42	2.17	10.60	4
125			14.62	12.82	15.62	1.30	7.80	4
250			15.34	12.32	18.92	2.90	11.10	4
500			15.69	12.92	19.52	2.85	10.75	4
1000	1		12.32	10.72	14.62	1.73	10.67	4
USEPAControl	pН		7.40	7.40	7.40	0.00	0.00	1
Colour Control			7.40	7.40	7.40	0.00	0.00	1
62.5			7.40	7.40	7.40	0.00	0.00	1
125			7.30	7.30	7.30	0.00	0.00	1
250			7.30	7.30	7.30	0.00	0.00	1
500			7.30	7.30	7.30	0.00	0.00	1
1000			7.50	7.50	7.50	0.00	0.00	1
USEPAControl	ConductivityuS/	cm	94.10	94.10	94.10	0.00	0.00	1
Colour Control			94.10	94.10	94.10	0.00	0.00	1
62.5			94.00	94.00	94.00	0.00	0.00	1
125			93.90	93.90	93.90	0.00	0.00	1
250			94.80	94.80	94.80	0.00	0.00	1
500			96.70	96.70	96.70	0.00	0.00	1
1000			98.70	98.70	98.70	0.00	0.00	1

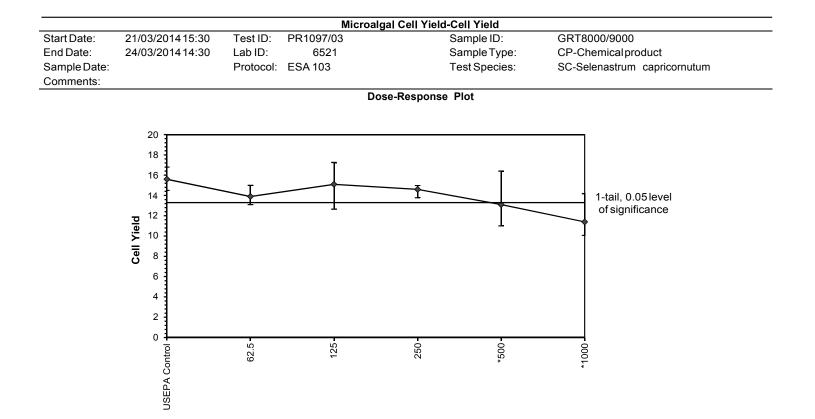
				Mi	croalgal (Cell Yield	Cell Yield		
Start Date:	21/03/2014	15:30	Test ID:	PR1097/03b			Sample ID:		Controls
End Date:	24/03/2014	14:30	Lab ID:	6521			Sample Typ	e:	AQ-Aqueous
Sample Date:			Protocol:	ESA 103			Test Specie	s:	SC-Selenastrum capricornutum
Comments:									
Conc-	1	2	3	4	5	6	7	8	
USEPAControl	16.516	15.616	15.516	14.516	15.316	15.116	15.516	16.816	
Colour Control	10.520	11.720	9.520	10.720					

			_	Transform: Untransformed				1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	
USEPA Control	15.616	1.0000	15.616	14.516	16.816	4.731	8				
*Colour Control	10.620	0.6801	10.620	9.520	11.720	8.492	4	10.311	1.812	0.878	

AuxiliaryTests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.913996		0.859		0.246992	-0.53359
F-Test indicates equal variances (p = 0.60)	1.490401		10.88245			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates significant differences	0.878156	0.056236	66.54938	0.626	1.2E-06	1, 10
Treatments vs USEPA Control						

			М	icroalgal	Cell Yield	-Cell Yield			
Start Date:	21/03/2014 15:30	Test ID:	PR1097/03b			Sample ID:		Controls End	
Date:	24/03/2014 14:30	Lab ID:	6521			Sample Typ	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 103			Test Specie	s:	SC-Selenastrum	capricornutum
Comments:									
				Au	xiliary Da	ita Summary	/		
Conc-	Parameter		Mean	Min	Max	SD	CV%	Ν	
USEPA Control	Cell Yield		15.62	14.52	16.82	0.74	5.50	8	
Colour Control			10.62	9.52	11.72	0.90	8.94	4	
USEPA Control	pН		7.40	7.40	7.40	0.00	0.00	1	
Colour Control			7.40	7.40	7.40	0.00	0.00	1	
USEPA Control	Conductivity uS/cn	n	94.10	94.10	94.10	0.00	0.00	1	
Colour Control			94.10	94.10	94.10	0.00	0.00	1	


				M	icroalgal (Cell Yield-	Cell Yield		
Start Date:	21/03/2014	15:30	Test ID:	PR1097/03		ç	Sample ID:		GRT8000/9000
End Date:	24/03/2014	14:30	Lab ID:	6521		9	Sample Typ	e:	CP-Chemical product
Sample Date:			Protocol:	ESA 103		-	Test Specie	s:	SC-Selenastrum capricornutum
Comments:									
Conc-mg/L	1	2	3	4	5	6	7	8	
USEPAControl	16.516	15.616	15.516	6 14.516	15.316	15.116	15.516	16.816	
62.5	15.016	13.116	13.716	3 13.816					
125	17.216	16.016	12.616	6 14.416					
250	14.816	15.016	13.816	6 14.916					
500	13.716	11.316	11.016	6 16.416					
1000	10.116	10.416	5 11.016	6 14.216					


				Transform	n: Untrans	formed			1-Tailed		Isotonic		
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean	
USEPA Control	15.616	1.0000	15.616	14.516	16.816	4.731	8				15.616	1.0000	
62.5	13.916	0.8911	13.916	13.116	15.016	5.719	4	1.876	2.508	2.273	14.541	0.9312	
125	15.066	0.9648	15.066	12.616	17.216	13.248	4	0.607	2.508	2.273	14.541	0.9312	
250	14.641	0.9376	14.641	13.816	15.016	3.798	4	1.076	2.508	2.273	14.541	0.9312	
*500	13.116	0.8399	13.116	11.016	16.416	19.137	4	2.759	2.508	2.273	13.116	0.8399	
*1000	11.441	0.7326	11.441	10.116	14.216	16.498	4	4.607	2.508	2.273	11.441	0.7326	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution (p > 0.05)		0.964213		0.924		0.60335	0.662417	
Bartlett's Test indicates equal variar		11.54276		15.08627						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	250	500	353.5534		2.273233	0.145574	11.05786	2.190227	0.003128	5, 22
Treatments vs USEPA Control										

mg/L			Line	ar Interpolatio	on (200 Resamples)
ma/l					,
iiig/ =	SD	95% CL	(Exp)	Skew	
45.39	106.00	15.83	494.04	2.0454	
335.36	145.87	0.00	842.83	0.1957	
472.34					1.0
686.01					0.9
919.07					0.9
>1000					0.8
>1000					0.7
	45.39 335.36 472.34 686.01 919.07 >1000	45.39 106.00 335.36 145.87 472.34 686.01 919.07 >1000	45.39 106.00 15.83 335.36 145.87 0.00 472.34 686.01 919.07 >1000	45.39 106.00 15.83 494.04 335.36 145.87 0.00 842.83 472.34 686.01 919.07 >1000	45.39 106.00 15.83 494.04 2.0454 335.36 145.87 0.00 842.83 0.1957 472.34 686.01 919.07 >1000 >1000

* indicates IC estimate less than the lowest concentration

			M	icroalgal (Cell Yield-	Cell Yield		
Start Date:	21/03/201415:30	Test ID:	PR1097/03		:	Sample ID:		GRT8000/9000
End Date:	24/03/201414:30	Lab ID:	6521		:	Sample Typ	e:	CP-Chemical product
Sample Date:		Protocol:	ESA 103		•	Test Specie	s:	SC-Selenastrum capricornutur
Comments:								
				Au	xiliary Dat	a Summary	/	
Conc-mg/L	Parameter		Mean	Min	Max	SD	CV%	N
USEPAControl	Cell Yield		15.62	14.52	16.82	0.74	5.50	8
62.5	i		13.92	13.12	15.02	0.80	6.41	4
125	i		15.07	12.62	17.22	2.00	9.38	4
250	1		14.64	13.82	15.02	0.56	5.09	4
500	1		13.12	11.02	16.42	2.51	12.08	4
1000			11.44	10.12	14.22	1.89	12.01	4
USEPAControl	рН		7.40	7.40	7.40	0.00	0.00	1
62.5	j		7.30	7.30	7.30	0.00	0.00	1
125	j		7.30	7.30	7.30	0.00	0.00	1
250)		7.20	7.20	7.20	0.00	0.00	1
500)		7.30	7.30	7.30	0.00	0.00	1
1000)		7.30	7.30	7.30	0.00	0.00	1
USEPAControl	Conductivity uS/c	m	94.10	94.10	94.10	0.00	0.00	1
62.5	-		95.40	95.40	95.40	0.00	0.00	1
125	;		93.90	93.90	93.90	0.00	0.00	1
250)		95.00	95.00	95.00	0.00	0.00	1
500)		96.00	96.00	96.00	0.00	0.00	1
1000)		98.80	98.80	98.80	0.00	0.00	1

Annex B

ALS Analytical Reports

CERTIFICATE OF ANALYSIS Work Order ES1407380 Page : 1 of 10 Amendment : 2 Environmental Division Sydney Client : ENVIRO RESOURCES MANAGEMENT Laboratory : Environmental Division Sydney Contact : MS OLIVIA PATTERSON Contact : Barbara Hanna												
Work Order	ES1407380	Page	: 1 of 10									
Amendment	: 2											
Client	: ENVIRO RESOURCES MANAGEMENT	Laboratory	: Environmental Division Sydney									
Contact	: MS OLIVIA PATTERSON	Contact	Barbara Hanna									
Address	GROUND FLOOR 33 SAUNDERS STREET, PYRMONT NSW 2009	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164									
	LOCKED BAG 24 BROADWAY NSW, AUSTRALIA 2007											
E-mail	: olivia.patterson@erm.com	E-mail	: Barbara.Hanna@alsglobal.com									
Felephone	: +61 02 8584 8888	Telephone	: +61 2 8784 8555									
acsimile	: +61 02 8584 8800	Facsimile	: +61 2 8784 8555									
Project Order	: 0222833	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement									
numberC-O-C	:											
number	:	Date Samples Received	: 04-APR-2014									
Sampler	:	Issue Date	: 06-MAY-2014									
Site	:											
		No. of samples received	2									
Quote number	: EN/009/13	No. of samples analysed	2									

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

I General Comments

I Analytical Results

I Surrogate Control Limits

NATA	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.							
NAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category					
		Ankit Joshi	Inorganic Chemist	Sydney Inorganics					
WORLD RECOGNISED		Ashesh Patel	Inorganic Chemist	Sydney Inorganics					
ACCREDITATION		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics					
		Pabi Subba	Senior Organic Chemist	Sydney Organics					
		Xingbin Lin	Senior Organic Chemist	Melbourne Organics					

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

EP075: 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

I This report has been amended and re-released to allow the reporting of additional analytical data.

| This report has been amended as a result of misinterpretation of sample identification numbers (IDs). All analysis results are as per the previous report

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SOIL STABILISED WITH GRT7000	SOIL STABILISED WITH GRT8000/9000	 	
	C	lient sampli	ng date / time	01-APR-2014 15:00	01-APR-2014 15:00	 	
Compound	CASNumber	LOR	Unit	ES1407380-001	ES1407380-002	 	
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.006	0.004	 	
Copper	7440-50-8	0.001	mg/L	0.004	0.003	 	
Nickel	7440-02-0	0.001	mg/L	0.009	0.021	 	
Lead	7439-92-1	0.001	mg/L	0.009	0.004	 	
Zinc	7440-66-6	0.005	mg/L	0.079	0.104	 	
EG035T: Total Recoverable Mercury	by FIMS				•		
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	10	9	 	
EP026ST: Chemical Oxygen Demand	(Sealed Tube)						
Chemical Oxygen Demand		5	mg/L	61	37	 	
EP030: Biochemical Oxygen Demand	(BOD)				7	r	
Biochemical Oxygen Demand		2	mg/L	<2	3	 	
EP070: Total Petroleum Hydrocarbon	s - Speciation					ſ	
Aromatic C10-C14		50	µg/L	<50	<50	 	
Aromatic C15-C28		100	µg/L	<100	<100	 	
Aromatic C29-C36		50	µg/L	<50	<50	 	
Aliphatic C10-C14		50	µg/L	<50	<50	 	
Aliphatic C15-C28		100	µg/L	<100	<100	 	
Aliphatic C29-C36		50	µg/L	<50	<50	 	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	 	
3- &4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sampleID	SOIL STABILISED WITH GRT7000	SOIL STABILISED WITH GRT8000/9000	 	
	Cli	ient sampli	ing date / time	01-APR-2014 15:00	01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075(SIM)A: Phenolic Compounds - Co	ntinued						
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	Irocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	 	
[^] Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	 	
[^] Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	 	
EP075A: Phenolic Compounds							
Phenol	108-95-2	2	µg/L	<2	<2	 	
2-Chlorophenol	95-57-8	2	µg/L	<2	<2	 	
2-Methylphenol	95-48-7	2	µg/L	<2	<2	 	
3- & 4-Methylphenol	1319-77-3	4	µg/L	<4	<4	 	
2-Nitrophenol	88-75-5	2	µg/L	<2	<2	 	
2.4-Dimethylphenol	105-67-9	2	µg/L	<2	<2	 	
2.4-Dichlorophenol	120-83-2	2	µg/L	<2	<2	 	
2.6-Dichlorophenol	87-65-0	2	µg/L	<2	<2	 	
4-Chloro-3-methylphenol	59-50-7	2	µg/L	<2	<2	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sampleID	SOIL STABILISED WITH GRT7000	SOIL STABILISED WITH GRT8000/9000	 	
	Cli	ent sampli	ng date / time	01-APR-2014 15:00	01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075A: Phenolic Compounds - Conti	nued						
2.4.6-Trichlorophenol	88-06-2	2	μg/L	<2	<2	 	
2.4.5-Trichlorophenol	95-95-4	2	μg/L	<2	<2	 	
Pentachlorophenol	87-86-5	4	µg/L	<4	<4	 	
EP075B: Polynuclear Aromatic Hydro	ocarbons						
Naphthalene	91-20-3	2	µg/L	<2	<2	 	
2-Methylnaphthalene	91-57-6	2	µg/L	<2	<2	 	
2-Chloronaphthalene	91-58-7	2	µg/L	<2	<2	 	
Acenaphthylene	208-96-8	2	µg/L	<2	<2	 	
Acenaphthene	83-32-9	2	µg/L	<2	<2	 	
Fluorene	86-73-7	2	µg/L	<2	<2	 	
Phenanthrene	85-01-8	2	µg/L	<2	<2	 	
Anthracene	120-12-7	2	µg/L	<2	<2	 	
Fluoranthene	206-44-0	2	µg/L	<2	<2	 	
Pyrene	129-00-0	2	µg/L	<2	<2	 	
N-2-Fluorenyl Acetamide	53-96-3	2	µg/L	<2	<2	 	
Benz(a)anthracene	56-55-3	2	µg/L	<2	<2	 	
Chrysene	218-01-9	2	µg/L	<2	<2	 	
Benzo(b) & Benzo(k)fluoranthene	205-99-2 207-08-9	4	μg/L	<4	<4	 	
7.12-Dimethylbenz(a)anthracene	57-97-6	2	µg/L	<2	<2	 	
Benzo(a)pyrene	50-32-8	2	µg/L	<2	<2	 	
3-Methylcholanthrene	56-49-5	2	µg/L	<2	<2	 	
Indeno(1.2.3.cd)pyrene	193-39-5	2	µg/L	<2	<2	 	
Dibenz(a.h)anthracene	53-70-3	2	µg/L	<2	<2	 	
Benzo(g.h.i)perylene	191-24-2	2	µg/L	<2	<2	 	
Sum of PAHs		2	µg/L	<2	<2	 	
Benzo(a)pyrene TEQ (zero)		2	µg/L	<2	<2	 	
EP075C: Phthalate Esters							
Dimethyl phthalate	131-11-3	2	µg/L	<2	<2	 	
Diethyl phthalate	84-66-2	2	µg/L	<2	<2	 	
Di-n-butyl phthalate	84-74-2	2	µg/L	2	<2	 	
Butyl benzyl phthalate	85-68-7	2	µg/L	<2	<2	 	
bis(2-ethylhexyl) phthalate	117-81-7	5	μg/L	14	8	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sampleID	SOIL STABILISED WITH GRT7000	SOIL STABILISED WITH GRT8000/9000	 	
	Cli	ent sampli	ing date / time	01-APR-2014 15:00	01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075C: Phthalate Esters - Continued							
Di-n-octylphthalate	117-84-0	2	µg/L	<2	<2	 	
EP075D: Nitrosamines							
N-Nitrosomethylethylamine	10595-95-6	2	µg/L	<2	<2	 	
N-Nitrosodiethylamine	55-18-5	2	µg/L	<2	<2	 	
N-Nitrosopyrrolidine	930-55-2	4	µg/L	<4	<4	 	
N-Nitrosomorpholine	59-89-2	2	µg/L	<2	<2	 	
N-Nitrosodi-n-propylamine	621-64-7	2	µg/L	<2	<2	 	
N-Nitrosopiperidine	100-75-4	2	µg/L	<2	<2	 	
N-Nitrosodibutylamine	924-16-3	2	µg/L	<2	<2	 	
N-Nitrosodiphenyl &	86-30-6 122-39-4	4	µg/L	<4	<4	 	
Diphenylamine						 	
Methapyrilene	91-80-5	2	µg/L	<2	<2	 	
EP075E: Nitroaromatics and Ketones	;						
2-Picoline	109-06-8	2	µg/L	<2	<2	 	
Acetophenone	98-86-2	2	µg/L	<2	<2	 	
Nitrobenzene	98-95-3	2	µg/L	<2	<2	 	
Isophorone	78-59-1	2	µg/L	<2	<2	 	
2.6-Dinitrotoluene	606-20-2	4	µg/L	<4	<4	 	
2.4-Dinitrotoluene	121-14-2	4	µg/L	<4	<4	 	
1-Naphthylamine	134-32-7	2	µg/L	<2	<2	 	
4-Nitroquinoline-N-oxide	56-57-5	2	µg/L	<2	<2	 	
5-Nitro-o-toluidine	99-55-8	2	µg/L	<2	<2	 	
Azobenzene	103-33-3	2	µg/L	<2	<2	 	
1.3.5-Trinitrobenzene	99-35-4	2	µg/L	<2	<2	 	
Phenacetin	62-44-2	2	µg/L	<2	<2	 	
4-Aminobiphenyl	92-67-1	2	µg/L	<2	<2	 	
Pentachloronitrobenzene	82-68-8	2	µg/L	<2	<2	 	
Pronamide	23950-58-5	2	µg/L	<2	<2	 	
Dimethylaminoazobenzene	60-11-7	2	µg/L	<2	<2	 	
Chlorobenzilate	510-15-6	2	µg/L	<2	<2	 	
EP075F: Haloethers							
Bis(2-chloroethyl) ether	111-44-4	2	µg/L	<2	<2	 	

Sub-Matrix: WATER (Matrix: WATER)	Cli		ent sample ID ng date / time	SOIL STABILISED WITH GRT7000 01-APR-2014 15:00	SOIL STABILISED WITH GRT8000/9000 01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075F: Haloethers - Continued							
Bis(2-chloroethoxy) methane	111-91-1	2	μg/L	<2	<2	 	
4-Chlorophenyl phenyl ether	7005-72-3	2	μg/L	<2	<2	 	
4-Bromophenyl phenyl ether	101-55-3	2	µg/L	<2	<2	 	
EP075G: Chlorinated Hydrocarbons							
1.3-Dichlorobenzene	541-73-1	2	µg/L	<2	<2	 	
1.4-Dichlorobenzene	106-46-7	2	µg/L	<2	<2	 	
1.2-Dichlorobenzene	95-50-1	2	µg/L	<2	<2	 	
Hexachloroethane	67-72-1	2	µg/L	<2	<2	 	
1.2.4-Trichlorobenzene	120-82-1	2	µg/L	<2	<2	 	
Hexachloropropylene	1888-71-7	2	µg/L	<2	<2	 	
Hexachlorobutadiene	87-68-3	2	µg/L	<2	<2	 	
Hexachlorocyclopentadiene	77-47-4	10	µg/L	<10	<10	 	
Pentachlorobenzene	608-93-5	2	µg/L	<2	<2	 	
Hexachlorobenzene (HCB)	118-74-1	4	µg/L	<4	<4	 	
EP075H: Anilines and Benzidines							
Aniline	62-53-3	2	µg/L	<2	<2	 	
4-Chloroaniline	106-47-8	2	µg/L	<2	<2	 	
2-Nitroaniline	88-74-4	4	μg/L	<4	<4	 	
3-Nitroaniline	99-09-2	4	µg/L	<4	<4	 	
Dibenzofuran	132-64-9	2	µg/L	<2	<2	 	
4-Nitroaniline	100-01-6	2	μg/L	<2	<2	 	
Carbazole	86-74-8	2	μg/L	<2	<2	 	
3.3`-Dichlorobenzidine	91-94-1	2	µg/L	<2	<2	 	
EP075I: Organochlorine Pesticides							
alpha-BHC	319-84-6	2	μg/L	<2	<2	 	
beta-BHC	319-85-7	2	µg/L	<2	<2	 	
gamma-BHC	58-89-9	2	µg/L	<2	<2	 	
delta-BHC	319-86-8	2	µg/L	<2	<2	 	
Heptachlor	76-44-8	2	µg/L	<2	<2	 	
Aldrin	309-00-2	2	µg/L	<2	<2	 	
Heptachlor epoxide	1024-57-3	2	µg/L	<2	<2	 	
alpha-Endosulfan	959-98-8	2	µg/L	<2	<2	 	

Sub-Matrix: WATER (Matrix: WATER)	Cli		ent sampleID ing date / time	SOIL STABILISED WITH GRT7000 01-APR-2014 15:00	SOIL STABILISED WITH GRT8000/9000 01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075I: Organochlorine Pesticides	- Continued						
4.4`-DDE	72-55-9	2	µg/L	<2	<2	 	
Dieldrin	60-57-1	2	µg/L	<2	<2	 	
Endrin	72-20-8	2	µg/L	<2	<2	 	
beta-Endosulfan	33213-65-9	2	µg/L	<2	<2	 	
4.4`-DDD	72-54-8	2	µg/L	<2	<2	 	
Endosulfan sulfate	1031-07-8	2	µg/L	<2	<2	 	
4.4`-DDT	50-29-3	4	µg/L	<4	<4	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	4	µg/L	<4	<4	 	
[^] Sum of DDD + DDE + DDT		4	µg/L	<4	<4	 	
EP075J: Organophosphorus Pestici	ides						
Dichlorvos	62-73-7	2	µg/L	<2	<2	 	
Dimethoate	60-51-5	2	µg/L	<2	<2	 	
Diazinon	333-41-5	2	µg/L	<2	<2	 	
Chlorpyrifos-methyl	5598-13-0	2	µg/L	<2	<2	 	
Malathion	121-75-5	2	µg/L	<2	<2	 	
Fenthion	55-38-9	2	µg/L	<2	<2	 	
Chlorpyrifos	2921-88-2	2	µg/L	<2	<2	 	
Pirimphos-ethyl	23505-41-1	2	µg/L	<2	<2	 	
Chlorfenvinphos	470-90-6	2	µg/L	<2	<2	 	
Prothiofos	34643-46-4	2	µg/L	<2	<2	 	
Ethion	563-12-2	2	µg/L	<2	<2	 	
EP070S:TPH Surrogates - Speciatio	n						
2-Fluorobiphenyl	321-60-8	0.1	%	107	97.6	 	
2-Bromonaphthalene	580-13-2	0.1	%	93.1	85.6	 	
EP075(SIM)S: Phenolic Compound S	Surrogates						
Phenol-d6	13127-88-3	0.1	%	20.7	10.0	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	59.6	34.9	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	77.3	54.0	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	66.7	50.6	 	
Anthracene-d10	1719-06-8	0.1	%	69.4	53.4	 	
4-Terphenyl-d14	1718-51-0	0.1	%	61.5	47.8	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	SOIL STABILISED WITH GRT7000	SOIL STABILISED WITH GRT8000/9000	 	
	CI	lient sampl	ing date / time	01-APR-2014 15:00	01-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407380-001	ES1407380-002	 	
EP075S: Acid Extractable Surrogates							
2-Fluorophenol	367-12-4	0.1	%	53.7	31.2	 	
Phenol-d6	13127-88-3	0.1	%	23.4	22.4	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	66.5	40.8	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	72.3	47.4	 	
EP075T: Base/Neutral Extractable Sur	rogates						
Nitrobenzene-D5	4165-60-0	0.1	%	71.6	55.0	 	
1.2-Dichlorobenzene-D4	2199-69-1	0.1	%	66.9	52.0	 	
2-Fluorobiphenyl	321-60-8	0.1	%	73.5	55.2	 	
Anthracene-d10	1719-06-8	0.1	%	78.0	60.4	 	
4-Terphenyl-d14	1718-51-0	0.1	%	75.5	58.4	 	

ALS

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)	
Compound	CAS Number	Low	High	
EP070S:TPH Surrogates - Speciation				
2-Fluorobiphenyl	321-60-8	80	112	
2-Bromonaphthalene	580-13-2	75	111	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	10.0	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27.4	113	
4-Terphenyl-d14	1718-51-0	32	112	
EP075S: Acid Extractable Surrogates				
2-Fluorophenol	367-12-4	10.0	116.6	
Phenol-d6	13127-88-3	10.0	69.0	
2-Chlorophenol-D4	93951-73-6	20.9	129.7	
2.4.6-Tribromophenol	118-79-6	10.0	150.7	
EP075T: Base/Neutral Extractable Surrogates				
Nitrobenzene-D5	4165-60-0	29.4	141.7	
1.2-Dichlorobenzene-D4	2199-69-1	23.6	120.7	
2-Fluorobiphenyl	321-60-8	27.2	134.9	
Anthracene-d10	1719-06-8	26.6	113	
4-Terphenyl-d14	1718-51-0	21.4	123	

CERTIFICATE OF ANALYSIS Work Order Page : 1 of 6 ES1409145 Client ENVIRO RESOURCES MANAGEMENT Laboratory : Environmental Division Sydney Contact Contact : MS OLIVIA PATTERSON : Barbara Hanna Address GROUND FLOOR Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 33 SAUNDERS STREET, PYRMONT NSW 2009 LOCKED BAG 24 **BROADWAY NSW. AUSTRALIA 2007** E-mail E-mail : Barbara.Hanna@alsglobal.com : olivia.patterson@erm.com Telephone : +61 02 8584 8888 Telephone : +61 2 8784 8555 Facsimile :+61 02 8584 8800 Facsimile : +61 2 8784 8555 Project Order : 0222833 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement numberC-O-C ----number Date Samples Received : 24-APR-2014 · ____ Sampler Issue Date : 29-APR-2014 · ____ Site · ____ No. of samples received 2 No. of samples analysed 2 Quote number : EN/009/13

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- I General Comments
- Analytical Results

ACCREDITATION

I Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Sub-Matrix: WATER (Matrix: WATER)			ent sample ID	SOIL STABILISED GRT-700	SOIL STABILISED GRT8001900	 	
	Cl	ient sampli	ing date / time	23-APR-2014 15:00	23-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1409145-001	ES1409145-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.65	7.18	 	
EP074A: Monocyclic Aromatic Hydro	ocarbons						
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	 	
Styrene	100-42-5	5	µg/L	<5	<5	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	 	
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	 	
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	 	
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	 	
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	 	
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	 	
p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5	 	
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	 	
EP074B: Oxygenated Compounds							
Vinyl Acetate	108-05-4	50	μg/L	<50	<50	 	
2-Butanone (MEK)	78-93-3	50	μg/L	<50	<50	 	
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	 	
2-Hexanone (MBK)	591-78-6	50	μg/L	<50	<50	 	
EP074C: Sulfonated Compounds							
Carbon disulfide	75-15-0	5	μg/L	<5	<5	 	
EP074D: Fumigants							£
2.2-Dichloropropane	594-20-7	5	μg/L	<5	<5	 	
1.2-Dichloropropane	78-87-5	5	μg/L	<5	<5	 	
cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	 	
trans-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	 	
1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	<5	 	
, , ,		, 	r3'-				
EP074E: Halogenated Aliphatic Com Dichlorodifluoromethane	75-71-8	50	μg/L	<50	<50	 	
Chloromethane	73-71-8	50	μg/L	<50	<50	 	
Vinyl chloride	74-07-3	50	μg/L	<50	<50	 	
vinyi chloride	/5-01-4	50	µу/∟	N00	NUU	 	

Sub-Matrix: WATER (Matrix: WATER)			ent sample ID	SOIL STABILISED GRT-700	SOIL STABILISED GRT8001900	 	
	Cli	ient sampli	ing date / time	23-APR-2014 15:00	23-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1409145-001	ES1409145-002	 	
EP074E: Halogenated Aliphatic Compoun	ids - Continued						
Bromomethane	74-83-9	50	μg/L	<50	<50	 	
Chloroethane	75-00-3	50	µg/L	<50	<50	 	
Trichlorofluoromethane	75-69-4	50	μg/L	<50	<50	 	
1.1-Dichloroethene	75-35-4	5	μg/L	<5	<5	 	
lodomethane	74-88-4	5	µg/L	<5	<5	 	
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	 	
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	 	
cis-1.2-Dichloroethene	156-59-2	5	μg/L	<5	<5	 	
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	 	
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	 	
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	 	
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	 	
Trichloroethene	79-01-6	5	µg/L	<5	<5	 	
Dibromomethane	74-95-3	5	µg/L	<5	<5	 	
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	 	
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	 	
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	 	
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	 	
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	 	
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	 	
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	 	
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	 	
Pentachloroethane	76-01-7	5	µg/L	<5	<5	 	
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	 	
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	 	
EP074F: Halogenated Aromatic Compour	ıds						
Chlorobenzene	108-90-7	5	µg/L	<5	<5	 	
Bromobenzene	108-86-1	5	µg/L	<5	<5	 	
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	 	
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	 	
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	 	
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	 	
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	SOIL STABILISED	SOIL STABILISED	 	
				GRT-700	GRT8001900	 	
	Cl	ient sampl	ing date / time	23-APR-2014 15:00	23-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1409145-001	ES1409145-002	 	
EP074F: Halogenated Aromatic Compou	nds - Continued						
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	 	
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	 	
EP074G: Trihalomethanes							
Chloroform	67-66-3	5	µg/L	<5	<5	 	
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	 	
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	 	
Bromoform	75-25-2	5	µg/L	<5	<5	 	
EP074H: Naphthalene							10
Naphthalene	91-20-3	7	µg/L	<7	<7	 	
EP074S: VOC Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	108	113	 	
Toluene-D8	2037-26-5	0.1	%	126	121	 	
4-Bromofluorobenzene	460-00-4	0.1	%	116	118	 	

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	78.3	133.2
Toluene-D8	2037-26-5	79.1	128.9
4-Bromofluorobenzene	460-00-4	80.8	123.7

Annex C

MSDSs

MSDS sheets are available on request

Annex D

Livestock Toxicity Profiles

Emulsifier

Chemical Description and Use

Chemical Name	Emulsifier
Synonyms	-
CAS	Proprietary
Molecular Formula	Comprises a mixture of hydrocarbons, typically carbon chains between 7
	– 16 carbon atoms per molecule.
Product Name	Proprietary
Product description	Part of the products GRT8000 and GRT9000
Product use	The emulsifier is added in order to ensure the mixing of the bitumen and the polymer. It is found in both GRT8000 and GRT9000. It is a major component of aviation fuel and is also used as a solvent, degreaser and in paints, insecticides, domestic fuels. [WHO]

Fate in the Environment

Air	If this emulsifier, un emulsified, is released to air it has a high vapour pressure and the compound will exist as vapour in the atmosphere. This vapour phase is degraded easily with a half life of between 0.27- 2.2days. [4]
Water	If this emulsifier, un-emulsified, is released to water, volatilisation is expected to be an important fate process, however slower volatilisation can be expected from groundwater or from water with a high sediment loading, where adsorbtion processes are taking place. [4]
Soil	If this emulsifier, un-emulsified, is released to soil some of the constituent compounds will be will display low mobility and some will be considered immobile in soil based upon high Koc values for the compounds with longer carbon chains. However the volatilisation from moist soil is also an important migration pathway. [4]

Background exposure

Air	Occupational exposure to this emulsifier may occur through inhalation and dermal contact with this compound at workplaces. Monitoring data indicates that the general population may be exposed via inhalation of ambient urban air as it is used frequently as a solvent, a degreaser and in domestic fuel. [6]
Water	Exposure to this emulsifier is considered unlikely to be via the ingestion of drinking water. This emulsifier is not found naturally and is not considered a normal constituent in surface or groundwater.[6] [7]
Soil	Exposure to this emulsifier is considered unlikely to be via ingestion of soils or dermal contact with soils. [6]
Food	Exposure to this emulsifier is considered unlikely to be via ingestion of food. [6]
Product Use	Monitoring data indicates that the general population may be exposed via dermal contact with the emulsifier during its use as a product (heating, fuel, in paints, insecticides). [6] [7]

Cattle Toxicity Data

No cattle toxicity data for the polymer is available from the USEPA (2007) Ecotox Database [11].

Mammalian Toxicity Data Related to Component Compounds

The table below presents a summary of ecotoxicity data for the constituent parts of the emulsifier:

Constituent	Surrogate	NOEL Used ³	Study Type	End point
Compounds ¹	Compound ²			
Alkyl monoaromatics	Low PAHs	50	Chronic rat study	LOAEL
Branched Alkanes	n-alkanes	50	Reproductive Rat	NOAEL
			study	
Diaromatics	Low PAHs	50	Chronic rat study	LOAEL
Monoaromatics	Low PAHs	50	Chronic rat study	LOAEL
n-alkanes	n-alkanes	50	Reproductive Rat	NOAEL
			study	
Naphthalenes	Low PAHs	50	Chronic rat study	LOAEL
Low PAHs	Low PAHs	50	Chronic rat study	LOAEL
High PAHs	Low PAHs	10	Chronic mice	LOAEL
			study	

¹Based on the breakdown presented in Ref. [1]

² A surrogate compound was chosen to represent these groups of compounds based on the most conservative chemical in each constituent group, eg. Most toxic or most mobile.

³ Based on values provided in Tables 1 and 2 in Ref. [2] for aliphatic or aromatic Oral RfDs for the relevant carbon chain range.

Physical Properties

	Value and Units	Reference
Molecular Weight	Range of weights. 4	
Vapour Pressure	0.48 mm Hg	4/7
Density	742 kg/m ³	8
Solubility	<1.0 x 10-3 g TOC/L	8
Air Diffusion Coefficient	-	-
Water Diffusion Coefficient	-	
Henry's Law Coefficient	7.3x10 ⁻¹² to 6.0x10 ⁻¹¹ cu cm/molecule-sec 4	
Кос	2.21 - 5.63 8	
Log Kow	3.17 ->6.5 8	
Odour Threshold	Characteristic odour 7	
Dermal Absorption		

Reference List

- 1. Total Petroleum Hydrocarbon Criteria Working Group Series, 1997, *Volume 2, Composition of Petroleum Mixtures,* Amherst Scientific Publishers
- 2. Total Petroleum Hydrocarbon Criteria Working Group Series, 1997, *Volume 4, Development* of Fraction Specific Reference Doses (*RfDs*) and Reference Concentrations (*RfCs*) for Total Petroleum Hydrocarbons (TPH), Amherst Scientific Publishers.
- 3. GRT8000 and 9000, Material Safety Data Sheet, Global Road Technology Australia Pty Ltd, Level 15 Corporate Centre One, 2 Corporate Court Bundall QLD 4217. August 2012.
- Hazardous Substances Data Bank (HSDB), <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~DF0fiQ:1</u> accessed 20th July 2012.
- United States Environmental Protection Agency (US EPA) (2007) ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. http://www.epa.gov/ecotox/, accessed 20th July 2012.
- National Institute for Occupational Safety and Health (NIOSH) (2007) NIOSH Pocket Guide to Chemical Hazards DHHS (NIOSH) Publication No. 2005-149, National Institute for Occupational Safety and Health, Centres for Disease Control and Prevention, Department of Health and Human Services (DHHS), http://www.cdc.gov/niosh/, accessed 20th July 2012.
- 7. Health Protection Agency, *HPA Compendium of Chemical Hazards, Kerosene* CHAPD HQ, 2006.
- 8. National Industrial Chemicals Notification and Assessment Scheme NICNAS, *Full Public Report, GTL Kerosine*, October 2008.

Bitumen

Chemical Description and Use

Chemical Name	Bitumen	
Synonyms	Asphalt	
CAS	8052-42-4	
Molecular Formula	Mixture of highly condensed chemicals, including polycyclicaromatic hydrocarbons (PAHs) and crystalline silica [1,5]. Asphalt is commonly comprised of a colloid of asphaltenes in the dispersed phase and maltenes in the continuous phase. Most natural bitumen contains sulphur and metals.	
Product Name	GRT9000 and GRT8000 – both contain bitumen	
Product description	Dark brown to black, cement-like semisolid or solid or viscousliquid produced by the non-destructive distillation of crude oil during petroleum refining [1].	
Product use	The GRT 8000 and 9000 products contain 45-50% bitumen. The GRT preparation is sprayed in a mixture with water for sealing purposes and dust control of road, haul and hardstand pavements [2].	

Fate in the Environment

Air	It is considered unlikely that bitumen or its components will volatilise to air in significant concentrations, unless heated. However there is a potential for particulate matter to be generated following heavy road usage.
Water	There is potential that PAH compounds may leach from bitumen and associated dusts and subsequently into run-off water, where it maybe transported to groundwater or surface water.
Soil	PAHs that have leached from bitumen may adsorb to soils depending on the organic carbon content and clay content of the soils. Particulate matter generated during heavy road usage may also enter soil.

Background exposure

Air	Inhalation of particulate matter generated following heavy road usage can be an exposure route. Occupational exposure to heated bitumen during industrial use may occur through inhalation of bitumen fumes comprising of a mixture of PAHs, which are generated at elevated temperatures at workplaces [1].
Water	Owing to their low solubility and high affinity with particulate matter, PAHs are not usually found in water in notable concentrations [1]. PAHs are generally not been reported in Australian drinking water supplies [3].PAHs are considered unlikely to be leached from bitumen and ingested via the consumption of drinking water.
Soil	Background data on bitumen concentrations in soil is limited. The compounds expected to leach from bitumen such as PAHs are not commonly found in soils unless there is a significant source such as petroleum leak or gas works.

Food	No data is available on levels of asphalt components in foodstuffs. PAHs may bioaccumulate in the environment, but, due to their low water solubilities and high molecular masses, the bioavailability of bitumen components is expected to be generally limited [1]. Analyses of components of runoff from asphalt pavement in fish and invertebrates from streams in USA reported PAH concentrations below the
	detection limit [1].

Cattle Toxicity Data

No cattle toxicity data for the polymer is available from the USEPA (2007) Ecotox Database [6].

Mammalian Toxicity Data Related to Component Compounds

The table below presents a summary of ecotoxicity data for the constituent parts of bitumen:

Constituent Compounds ¹	Surrogate Compound ²	NOEL Used ³ mg/kg bw/day	Study Type	End point
Asphaltenes	Aliphatic $C_{>16} - C_{21,}$ $C_{>21} - C_{35}$	2	Nephrotoxicity Rat study	NOAEL
Hard resins	Aliphatic $C_{>16} - C_{21,}$ $C_{>21} - C_{35}$	2	Nephrotoxicity Rat study	NOAEL
Soft resins	$C_{>16} - C_{21,}$ $C_{>21} - C_{35}$	2	Nephrotoxicity Rat study	NOAEL
Oils	$C_{>16} - C_{21,}$ $C_{>21} - C_{35}$	2	Nephrotoxicity Rat study	NOAEL
Waxes	$C_{>16} - C_{21,}$ $C_{>21} - C_{35}$	2	Nephrotoxicity Rat study	NOAEL

¹Based on the breakdown presented in Ref. [9]

²Based on the most conservative chemical in each constituent group, eg. Most toxic or most mobile.

³ Based on values provided in Tables 1 and 2 in Ref. [8] for aliphatic or aromatic Oral RfDs for the relevant carbon chain range.

Bitumen also comprises vanadium and nickel, which have been studied for effects on beef cattle:

Metals:	Toxicity Ref. Value mg/kg/day	Reference
Vanadium	4.2	10
Nickel	1.7	11

Physical Properties

Physical properties for asphalt are presented in the table below.

	Value and Units	Reference
Molecular Weight	Ranges from 500 to 15,000	1
Vapour Pressure	<1.0 x 10 ⁻¹⁰ to 1.6 x 10 ⁻⁵ mm Hg	7
Relative Density (water = 1)	1.0 - 1.18	1
Solubility	Insoluble in water at 20°C (<1.0 x 10 ⁻⁵ mg/L); partially soluble in aliphatic organic solvents; and soluble in carbon disulfide, chloroform, ether and acetone.	4, 7
Air Diffusion Coefficient	-	-
Water Diffusion Coefficient	-	-
Henry's Law Coefficient	-	-
Кос	-	-
Log Kow	> 6	1
Odour Threshold	Tarry odour	4
Dermal Absorption	-	-

Reference List

- 1. World Health Organisation (WHO) (2004) Concise International Chemical Assessment Document 59. *Asphalt (Bitumen).*
- GRT8000 and 9000, Material Safety Data Sheet, Global Road Technology Australia Pty Ltd, Level 15 Corporate Centre One, 2 Corporate Court Bundall QLD 4217 AUSTRALIA. August 2012
- National Health and Medical Research Council (NHMRC), Natural Resource Management Ministerial Council (NRMMC) (2011) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra
- 4. Hazardous Substances Data Bank (HSDB) Toxicology Data Network, <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~DF0fiQ:1</u> accessed 24th April 2014.
- 5. Material Safety Data Sheet for Asphalt (unhardened and hardened asphalt), http://www.rinkerpipe.com/Toolbox/MSDS/ASPHALT.pdf accessed 24th April 2014.
- Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, The Guidelines, National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT.
- United States Environmental Protection Agency (US EPA)(2011) Hazard Characterization Document. Screening-Level Hazard Characterization – Asphalt Category. http://www.epa.gov/chemrtk/hpvis/hazchar/Category_Asphalts_March_2011.pdf, accessed 30th July 2012.

- 8. Total Petroleum Hydrocarbon Criteria Working Group Series, 1997, Volume 4, Development of Fraction Specific Reference Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH), Amherst Scientific Publishers.
- *9.* World Health Organisation (WHO) (2004) Concise International Chemical Assessment Document 59, *Asphalt (Bitumen)*
- 10. USEPA (2005).Ecological Soil Screening Levels for Vanadium Interim Final OSWER Directive 9285.7-75
- 11. USEPA (2007). Ecological Soil Screening Levels for Nickel Interim Final OSWER Directive 9285.7-76

Styrene Acrylic hybrid polymer

Chemical Description and Use

Chemical Name	Styrene Acrylic hybrid polymer
Synonyms	-
CAS	100 -42 -5(styrene) 141-32-2(acrylic)
Molecular Formula	-
Product Name	Part of GRT9000
Product description	GRT 9000 is an opaque brown liquid with a faint odour [1].
Product use	The GRT 9000 product contains 15-30% of the acrylate polymer. The GRT
	preparation is sprayed as a mixture with water for sealing purposes and
	dust control of road, haul and hardstand pavements [1].

Fate in the Environment

Air	Limited information is available on the fate of this specific copolymer in the environment. However, acrylate polymers in general are stable in the environment and are not expected to break down by hydrolysis, undergo thermal degradation, photodegradation or depolymerisation. Any incineration of acrylate polymers is expected to produce water and oxides of carbon and nitrogen [2]
Water	Low water solubility is expected for the cross-linked copolymer, reducing the potential for leaching [2].
Soil	Acrylate polymers quickly become immobile upon association with soil layer [2]. Any styrene that is released into the soil may be broken down bybacteria or other microorganisms [3].

Background exposure

Air	It is considered unlikely that the polymer is generally present in air in significant concentrations, given its high molecular weight and generally low level of volatility. Any styrene monomer that evaporates into the atmosphere is quickly broken down, usually within 1-2 days, and is therefore not likely to be persistent in the environment [3].
Water	This polymer is unlikely to be present in water at significant background concentrations, as it has limited reactivity with the water phase. Due to the low water solubility of acrylate polymers, the potential for the leaching of these chemicals into waters are low [2]. Styrene has not been found in Australian drinking water sources [4].
Soil	The matrix structure of acrylate polymers limits the hydrolysis or biodegradation of the polymer, resulting in its potential persistence in the environment [2].

Cattle Toxicity Data

No cattle toxicity data for the polymer is available from the USEPA (2007) Ecotox Database [6].

Mammalian Toxicity Data related to the Polymer Component Compounds

Species	Exposure	Test Location	Observed	Endpoint	Effect
	Duration		Response		
	(mean)		Mean		
Styrene – Ref. [[6]				-
Rat	78 weeks	Laboratory	2000 mg/kg-d	LOAEL	Mortality
Dog	Dog 561 Days L		200 mg/kg-d	NOAEL	Heinz Body
Dog			200 mg/kg-u	NOALL	Formation
Polymer acid –	Ref. [6]				
Rat		Laboratory	78 mg/kg-d	NOAEL	Effects on feeding
Labola		Laboratory	/omg/kg-u	NOALL	behaviour

Physical Properties

	Value and Units	Reference
Molecular Weight	1,090,000 (average for acrylic polymers)	2
Vapour Pressure	Negligible	5
Density	-	-
Solubility	Negligible	5
Air Diffusion Coefficient	-	-
Water Diffusion Coefficient	-	-
Henry's Law Coefficient	-	-
Кос	-	-
Log Kow	-	-
Odour Threshold	-	-
Dermal Absorption	-	-

Reference List

- 1. *GRT8000*, Material Safety Data Sheet, Global Road Technology Australia Pty Ltd, Level 15 Corporate Centre One, 2 Corporate Court Bundall QLD 4217 AUSTRALIA. August 2012.
- National Industrial Chemicals Notification and Assessment Scheme (NICNAS). Full Public Report: Acrylic Polymer. 22 September 1995. Available at: <u>http://www.nicnas.gov.au/publications/car/new/plc/plc0000fr/plc18fr.pdf.</u>
- 3. Agency for Toxic Substances and Disease Registry (ATSDR) Public Health Statement: Styrene. June 2012. Available at: <u>http://www.atsdr.cdc.gov/ToxProfiles/tp53-c1-b.pdf</u>.

- 4. National Health and Medical Research Council (NHMRC), Natural Resource Management Ministerial Council (NRMMC) (2011) *Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy*, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra
- National Industrial Chemicals Notification and Assessment Scheme (NICNAS) Full Public Report: Polymer of 2-propenoic acid, butyl ester, diethenylbenzene and etheylbenzene. 23 August 1991. Available at:

http://www.nicnas.gov.au/publications/car/new/na/nafullr/na0000fr/na13fr.pdf.

 United States Environmental Protection Agency (US EPA) (2007) ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. http://www.epa.gov/ecotox/, accessed 1ST August 2012. Annex E

Livestock Calculations

Calculations										aliphatics					
Parameter	Acronym	Units	Oil	Styrene	Polymer Acid	Aliphatics (n-alkanes)	LowPAHs	HighPAHs	Ashaltenes	Hard resins	Soft resins	Oils	Waxes	Vanadium	Nickel
Test Species			Mice	Dog	Rat	Rat	Rat	Mice	Rat	Rat	Rat	Rat	Rat		
Body Weight Test Species	BW _{Test Species}	kg	0.035	10	0.35	0.35	0.35	0.035	0.35	0.35	0.35	0.35	0.35	Based on USEPA Ecological Soil Screening Levels for Vanadium Interim Final OSWER Directive 9285.7-75	Based on USEPA Ecological Soil Screening Levels for Nickel Interim Final OSWER Directive 9285.7-76
Livestock			Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle	Beef Cattle
Body Weight for Target Livestock	$\mathrm{BW}_{\mathrm{AOC}}$	kg	454	454	454	454	454	454	454	454	454	454	454	454	454
Scaling Factor	SF	unitless	0.09	0.39	0.17	0.17	0.17	0.09	0.17	0.17	0.17	0.17	0.17		
Effects Level	NOAEL	mg/kg-day	50	200	78	50	50	10	50	100	100	100	100		
NOAEL or LOAEL			NOAEL	NOAEL	NOAEL	NOAEL	LOAEL	LOAEL	NOAEL	NOAEL	NOAEL	NOAEL	NOAEL		
Duration of Tox Test Dossing Schedule Adjustment (e.g. converting from 5 days per week doses to daily doses).	,		Chronic	Chronic	Chronic 1	Reproductive 1	Chronic 1	Chronic 1	Reproductive	Reproductive	Reproductive 1	Reproductive	Reproductive		
Uncertainty Factor	UF		1	1	1	1	10	10	1	1	1	1	1		
Toxicity Reference Value	TRV	mg/kg-day	3.33	77.05	13.0	8.33	0.833	0.094	8.33	16.7	16.7	16.66	16.7	4.2	1.7
Acceptable Hazard Quotient	HQ	unitless	1	1	1	1	1	1	1	1	1	1	1	1	1
Soil Ingestion Rate	IR _{soil}	kg	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
Soil Ingestion Risk Based Screening Leve		mg/kg-day	709.0	16,422.6	2,770.3	1,775.8	177.6	20	1,775.8	3,552	3,552	3,552	3,552	886.7	362.3
Soil Ingestion Risk Based Screening Leve	el with AUF	mg/kg-day	70,901.9	1,642,261.4	277,028.1	177,582.1	17,758.2	1,997.2	177,582.1	355,164.3	355,164.3	355,164.3	355,164.3	88,668.5	36,234.7

Annex E2 - % Weight GRT 7000 0222833

					HI	3.86E-03
Other non-hazardous ingredients	2%	2	3810	N/A	N/A	N/A
Water	40-50%	50	3810	N/A	N/A	N/A
		24	3810	914.29	277028.1488	3.30E-03
Alkyl acrylate-styrene copolymer	40-48%	24	3810	914.29	1642261.387	5.57E-04
	%	%	mg/kg	mg/kg	mg/kg	
screening	stated %	% for calculation	in soil (mg/kg)	Soil	RBSLs	HQ
GRT7000 - Chemical breakdown for	MSDS	ERM Estimate of	total product conc	Concentration in		

Table E2. GRT7000 Screen of Soil Concentrations against derived SSTLs

N/A = the non-hazardous ingredients and water were not assessed.

HI = Hazard Index. This is defined in the body of the report.

Area Use Factor relates to the estimated time spent grazing adjacent to the roadway, in this case, 1% of the time

Mix of chemicals in the IBC and Water Truck have been taken from the most conservative estimates from Global Road Technology

Concentration in Soil was calculated based on the volumes applied according to manufacturers specifications

The concentrations for soil were based on 4 litres of solutions applied to a depth of 10cm and a soil density of 1.5 g/cm3

Environmental Resources Management Australia Pty Ltd

Annex E3 - % Weight 8000 0222833

Table E3. GRT8000/9000 Screen of Soil Concentrations against derived SSTLs

GRT8000 - chemical	% mix in productas	total product conc	Concentration		
breakdown for screening	per MSDS Sheet	in soil (mg/kg)	in Soil	RBSLs	HQ
	%	mg/kg	mg/kg	mg/kg	
Asphaltenes	15.55	3810	592.38	1997.24	2.97E-01
Hard resins	17.23	3810	656.19	355164.29	1.85E-03
Softresins	10.64	3810	405.24	355164.29	1.14E-03
Oils	5.66	3810	215.71	355164.29	6.07E-04
Waxes	0.99	3810	37.62	355164.29	1.06E-04
Vanadium	0.0196375	3810	0.75	88668.54	8.44E-06
Nickel	0.0017175	3810	0.07	36234.74	1.81E-06
Styrene	15	3810	571.43	1642261.39	3.48E-04
Polymer Acid	15	3810	571.43	277028.15	2.06E-03
n-alkanes	5.84	3810	222.48	177582.15	1.25E-03
total % weight Low PAHs	1.19	3810	45.16	17758.21	2.54E-03
total % weight High PAHs	0.0005	3810	0.02	1997.24	9.77E-06
				HI	9.93E-03

The components of Bitumen have been broken down into ashphaltenes, hard resins, soft resins, oils, waxes, vanadium and nickel

The components of the emulsifier have been broken down into n-alkanes, low PAHs and high PAHs

HI = Hazard Index. This is defined in the body of the report.

Area Use Factor relates to the estimated time spent grazing adjacent to the roadway, in this case, 1% of the time

Mix of chemicals in the IBC and Water Truck have been taken from the most conservative estimates from Global Road Technology

Concentration in Soil was calculated based on the volumes applied according to manufacturers specifications

The concentrations for soil were based on 4 litres of solutions applied to a depth of 10cm and a soil density of 1.5 g/cm3

Environmental Resources Management Australia Pty Ltd

Annex E4 - % Weight ISB 9000 0222833

	Citem of Son Concentr				
GRT9000 - chemical breakdown	% mix in product as per	total product conc in			
for screening	MSDS Sheet	soil (mg/kg)	Concentration in Soil	RBSLs	HQ
	%	mg/kg	mg/kg		
Asphaltenes	14.6170	3810	556.84	177582.15	3.14E-03
Hard resins	16.1915	3810	616.82	355164.29	1.74E-03
Soft resins	9.9993	3810	380.92	355164.29	1.07E-03
Oils	5.3228	3810	202.77	355164.29	5.71E-04
Waxes	0.9283	3810	35.36	355164.29	9.96E-05
Vanadium	0.0185	3810	0.70	88668.54	7.93E-06
Nickel	0.0016	3810	0.06	36234.74	1.70E-06
Styrene	15.00	3810	571.43	1642261.39	3.48E-04
Polymer Acid	15.00	3810	571.43	277028.15	2.06E-03
n-alkanes	5.84	3810	222.48	177582.15	1.25E-03
total % weight Low PAHs	0.81	3810	30.94	17758.21	1.74E-03
total % weight High PAHs	0.0005	3810	0.02	1997.24	9.77E-06
	•]	HI	8.90E-03

Table E4.GRT9000 Screen of Soil Concentrations against derived SSTLs

The components of Bitumen have been broken down into ashphaltenes, hard resins, soft resins, oils, waxes, vanadium and nickel

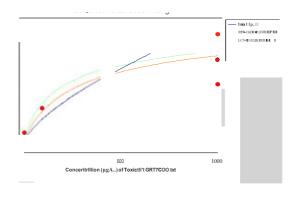
The components of the emulsifier have been broken down into n-alkanes, low PAHs and high PAHs

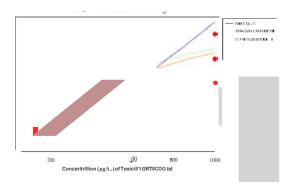
HQ = Hazard Quotient. This is defined in the body of the report

HI = Hazard Index. This is defined in the body of the report.

Area Use Factor relates to the estimated time spent grazing adjacent to the roadway, in this case, 1% of the time

Mix of chemicals in the IBC and Water Truck have been taken from the most conservative estimates from Global Road Technology


Concentration in Soil was calculated based on the volumes applied according to manufacturers specifications


The concentrations for soil were based on 4 litres of solutions applied to a depth of 10cm and a soil density of 1.5 g/cm3

Environmental Resources Management Australia Pty Ltd

Annex F

Burrlioz Model Outputs

ERM has over 100 offices across the following countries worldwide

Australia Argentina Belgium	Netherlands Peru Poland
Brazil	Portugal
China	Puerto Rico
France	Singapore
Germany	Spain
Hong Kong	Sri Lanka
Hungary	Sweden
India	Taiwan
Indonesia	Thailand
Ireland	UK
Italy	USA
Japan	Venezuela
Korea	Vietnam
Malaysia	
Mexico	

Environmental Resources Management

Building C, 33 Saunders Street Pyrmont NSW 2009 Locked Bag 24, Broadway NSW 2007

T: 61 2 8584 8888 F: 61 2 8584 8800 www.erm.com

